skip to main content
research-article

Polarization fields: dynamic light field display using multi-layer LCDs

Published: 12 December 2011 Publication History

Abstract

We introduce polarization field displays as an optically-efficient design for dynamic light field display using multi-layered LCDs. Such displays consist of a stacked set of liquid crystal panels with a single pair of crossed linear polarizers. Each layer is modeled as a spatially-controllable polarization rotator, as opposed to a conventional spatial light modulator that directly attenuates light. Color display is achieved using field sequential color illumination with monochromatic LCDs, mitigating severe attenuation and moiré occurring with layered color filter arrays. We demonstrate such displays can be controlled, at interactive refresh rates, by adopting the SART algorithm to tomographically solve for the optimal spatially-varying polarization state rotations applied by each layer. We validate our design by constructing a prototype using modified off-the-shelf panels. We demonstrate interactive display using a GPU-based SART implementation supporting both polarization-based and attenuation-based architectures. Experiments characterize the accuracy of our image formation model, verifying polarization field displays achieve increased brightness, higher resolution, and extended depth of field, as compared to existing automultiscopic display methods for dual-layer and multi-layer LCDs.

Supplementary Material

Supplemental material. (a186-lanman.zip)

References

[1]
Akeley, K., Watt, S. J., Girshick, A. R., and Banks, M. S. 2004. A stereo display prototype with multiple focal distances. ACM Trans. Graph. 23, 804--813.
[2]
Andersen, A., and Kak, A. 1984. Simultaneous Algebraic Reconstruction Technique (SART): A superior implementation of the ART algorithm. Ultrasonic Imaging 6, 1, 81--94.
[3]
Bell, G. P., Craig, R., Paxton, R., Wong, G., and Galbraith, D. 2008. Beyond flat panels: multi-layered displays with real depth. SID Digest 39, 1, 352--355.
[4]
Chai, J.-X., Tong, X., Chan, S.-C., and Shum, H.-Y. 2000. Plenoptic sampling. In ACM SIGGRAPH, 307--318.
[5]
Chen, C.-H., Lin, F.-C., Hsu, Y.-T., Huang, Y.-P., and Shieh, H.-P. D. 2009. A field sequential color LCD based on color fields arrangement for color breakup and flicker reduction. Display Technology 5, 1, 34--39.
[6]
Coleman, T., and Li, Y. 1996. A reflective newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM Journal on Optimization 6, 4, 1040--1058.
[7]
Date, M., Hisaki, T., Takada, H., Suyama, S., and Nakazawa, K. 2005. Luminance addition of a stack of multidomain liquid-crystal displays and capability for depth-fused three-dimensional display application. Applied Optics 44, 6, 898--905.
[8]
Davis, J. A., McNamara, D. E., Cottrell, D. M., and Sonehara, T. 2000. Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator. Applied Optics 39, 10, 1549--1554.
[9]
Dodgson, N. A. 2009. Analysis of the viewing zone of multiview autostereoscopic displays. In SPIE Stereoscopic Displays and Applications XIII, 254--265.
[10]
Favalora, G. E. 2005. Volumetric 3D displays and application infrastructure. IEEE Computer 38, 37--44.
[11]
Gotoda, H. 2010. A multilayer liquid crystal display for autostereoscopic 3D viewing. In SPIE Stereoscopic Displays and Applications XXI, vol. 7524, 1--8.
[12]
Gotoda, H. 2011. Reduction of image blurring in an autostereoscopic multilayer liquid crystal display. In SPIE Stereoscopic Displays and Applications XXII, vol. 7863, 1--7.
[13]
Hart, W. M. 1987. The temporal responsiveness of vision. In Adler's Physiology of the Eye, R. A. Moses and W. M. Hart, Eds. C. V. Moseby Company.
[14]
Hecht, E. 2001. Optics. Addison Wesley.
[15]
Ives, F. E., 1903. Parallax stereogram and process of making same. U. S. Patent 725,567.
[16]
Jacobs, A., et al. 2003. 2D/3D switchable displays. Sharp Technical Journal, 4, 1--5.
[17]
Jones, R. C. 1941. A new calculus for the treatment of optical systems. J. Opt. Soc. Am. 31, 7, 488--493.
[18]
Kaczmarz, S. 1937. Angenäherte auflösung von systemen linearer gleichungen. Bull. Acad. Pol. Sci. Lett. A 35, 335--357.
[19]
Kak, A. C., and Slaney, M. 2001. Principles of Computerized Tomographic Imaging. Society for Industrial Mathematics.
[20]
Keck, B., Hofmann, H., Scherl, H., Kowarschik, M., and Hornegger, J. 2009. GPU-accelerated SART reconstruction using the CUDA programming environment. In SPIE, vol. 7258.
[21]
Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization. ACM Trans. Graph. 29, 163:1--163:10.
[22]
Levoy, M., and Hanrahan, P. 1996. Light Field Rendering. In ACM SGGRAPH, 31--42.
[23]
Lippmann, G. 1908. Épreuves réversibles donnant la sensation du relief. Journal of Physics 7, 4, 821--825.
[24]
Loukianitsa, A., and Putilin, A. N. 2002. Stereodisplay with neural network image processing. In SPIE Stereoscopic Displays and Virtual Reality Systems IX, vol. 4660, 207--211.
[25]
Ma, B., Yao, B., Ye, T., and Lei, M. 2010. Prediction of optical modulation properties of twisted-nematic liquid-crystal display by improved measurement of Jones matrix. Applied Physics 107.
[26]
Moreno, I., Velásquez, P., Fernández-Pousa, C. R., Sánchez-López, M. M., and Mateos, F. 2003. Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display. Applied Physics 94.
[27]
Moreno, I., Martínez, J. L., and Davis, J. A. 2007. Two-dimensional polarization rotator using a twisted-nematic liquid-crystal display. Applied Optics 46, 6, 881--887.
[28]
Nayar, S., and Anand, V. 2007. 3D display using passive optical scatterers. IEEE Computer Magazine 40, 7, 54--63.
[29]
Putilin, A. N., and Loukianitsa, A., 2006. Visualization of three dimensional images and multi aspect imaging. U. S. Patent 6,985,290.
[30]
Stewart, R. G., and Roach, W. R., 1994. Field-sequential display system utilizing a backlit LCD pixel array and method for forming an image. U. S. Patent 5,337,068.
[31]
Sullivan, A. 2003. A solid-state multi-planar volumetric display. In SID Digest, vol. 32, 207--211.
[32]
Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM Trans. Graph. 30, 4.
[33]
Yeh, P., and Gu, C. 2009. Optics of Liquid Crystal Displays. John Wiley and Sons.
[34]
Zwicker, M., Matusik, W., Durand, F., and Pfister, H. 2006. Antialiasing for automultiscopic 3D displays. In Eurographics Symposium on Rendering.

Cited By

View all

Index Terms

  1. Polarization fields: dynamic light field display using multi-layer LCDs

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 30, Issue 6
      December 2011
      678 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2070781
      Issue’s Table of Contents

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 12 December 2011
      Published in TOG Volume 30, Issue 6

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. automultiscopic 3D displays
      2. computational displays
      3. light fields
      4. multi-layer LCDs
      5. tomography

      Qualifiers

      • Research-article

      Funding Sources

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)35
      • Downloads (Last 6 weeks)2
      Reflects downloads up to 01 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media