skip to main content
10.1145/1390156.1390190acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmlConference Proceedingsconference-collections
research-article

Confidence-weighted linear classification

Published: 05 July 2008 Publication History

Abstract

We introduce confidence-weighted linear classifiers, which add parameter confidence information to linear classifiers. Online learners in this setting update both classifier parameters and the estimate of their confidence. The particular online algorithms we study here maintain a Gaussian distribution over parameter vectors and update the mean and covariance of the distribution with each instance. Empirical evaluation on a range of NLP tasks show that our algorithm improves over other state of the art online and batch methods, learns faster in the online setting, and lends itself to better classifier combination after parallel training.

References

[1]
Blitzer, J., Dredze, M., & Pereira, F. (2007). Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. Association of Computational Linguistics (ACL).
[2]
Bordes, A., & Bottou, L. (2005). The huller: a simple and efficient online svm. European Conference on Machine Learning( ECML ), LNAI 3720.
[3]
Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.
[4]
Carvalho, V. R., & Cohen, W. W. (2006). Single-pass online learning: Performance, voting schemes and online feature selection. KDD-2006.
[5]
Cesa-Bianchi, N., Conconi, A., & Gentile, C. (2005). A second-order perceptron algorithm. SIAM Journal on Computing, 34, 640--668.
[6]
Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
[7]
Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., & Singer, Y. (2006). Online passive-aggressive algorithms. JMLR, 7, 551--585.
[8]
Harrington, E., Herbrich, R., Kivinen, J., Platt, J., & Williamson, R. (2003). Online bayes point machines. 7th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD).
[9]
Herbrich, R., Graepel, T., & C. Campbell (2001). Bayes point machinesonline passive-aggressive algorithms. JMLR, 1, 245--279.
[10]
Lewis, D. D., Yand, Y., Rose, T., & Li., F. (2004). Rcv1: A new benchmark collection for text categorization research. JMLR, 5, 361--397.
[11]
McCallum, A. K. (2002). Mallet: A machine learning for language toolkit. http://mallet.cs.umass.edu.
[12]
Petersen, K. B., & Pedersen, M. S. (2007). The matrix cookbook.
[13]
Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. The MIT Press.
[14]
Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psych. Rev., 68, 386--407.
[15]
Shivaswamy, P., & Jebara, T. (2007). Ellipsoidal kernel machines. Artificial Intelligence and Statistics.
[16]
Sutton, R. S. (1992). Adapting bias by gradient descent: an incremental version of delta-bar-delta. Proceedings of the Tenth National Conference on Artificial Intelligence (pp. 171--176). MIT Press.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICML '08: Proceedings of the 25th international conference on Machine learning
July 2008
1310 pages
ISBN:9781605582054
DOI:10.1145/1390156
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

  • Pascal
  • University of Helsinki
  • Xerox
  • Federation of Finnish Learned Societies
  • Google Inc.
  • NSF
  • Machine Learning Journal/Springer
  • Microsoft Research: Microsoft Research
  • Intel: Intel
  • Yahoo!
  • Helsinki Institute for Information Technology
  • IBM: IBM

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 05 July 2008

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Funding Sources

Conference

ICML '08
Sponsor:
  • Microsoft Research
  • Intel
  • IBM

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)32
  • Downloads (Last 6 weeks)1
Reflects downloads up to 16 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media