skip to main content
article

Feature-based similarity search in 3D object databases

Published: 01 December 2005 Publication History

Abstract

The development of effective content-based multimedia search systems is an important research issue due to the growing amount of digital audio-visual information. In the case of images and video, the growth of digital data has been observed since the introduction of 2D capture devices. A similar development is expected for 3D data as acquisition and dissemination technology of 3D models is constantly improving. 3D objects are becoming an important type of multimedia data with many promising application possibilities. Defining the aspects that constitute the similarity among 3D objects and designing algorithms that implement such similarity definitions is a difficult problem. Over the last few years, a strong interest in methods for 3D similarity search has arisen, and a growing number of competing algorithms for content-based retrieval of 3D objects have been proposed. We survey feature-based methods for 3D retrieval, and we propose a taxonomy for these methods. We also present experimental results, comparing the effectiveness of some of the surveyed methods.

References

[1]
Ankerst, M., Kastenmüller, G., Kriegel, H.-P., and Seidl, T. 1999a. 3D shape histograms for similarity search and classification in spatial databases. In Proceedings of the 6th International Symposium on Advances in Spatial Databases (SSD'99). Springer-Verlag, London, UK, 207--226.]]
[2]
Ankerst, M., Kastenmüller, G., Kriegel, H.-P., and Seidl, T. 1999b. Nearest neighbor classification in 3D protein databases. In Proceedings of the 7th International Conference on Intelligent Systems for Molecular Biology. AAAI Press, 34--43.]]
[3]
Ansary, T. F., Vandeborre, J.-P., Mahmoudi, S., and Daoudi, M. 2004. A bayesian framework for 3D models retrieval based on characteristic views. In Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission. IEEE Computer Society, 139--146.]]
[4]
Ashley, J., Flickner, M., Hafner, J., Lee, D., Niblack, W., and Petkovic, D. 1995. The query by image content (QBIC) system. SIGMOD Rec. 24, 2, 475.]]
[5]
Assfalg, J., Bimbo, A. D., and Pala, P. 2004. Retrieval of 3D objects by visual similarity. In Proceedings of the 6th ACM SIGMM International Workshop on Multimedia Information Retrieval (MIR'04). ACM Press, New York, NY, 77--83.]]
[6]
Baeza-Yates, R. A. and Ribeiro-Neto, B. 1999. Modern Information Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston, MA.]]
[7]
Berchtold, S., Keim, D. A., and Kriegel, H.-P. 1997. Using extended feature objects for partial similarity retrieval. VLDB J. 6, 4, 333--348.]]
[8]
Bespalov, D., Shokoufandeh, A., Regli, W. C., and Sun, W. 2003. Scale-space representation of 3D models and topological matching. In Proceedings of the 8th ACM Symposium on Solid Modeling and Applications (SM'03). ACM Press, New York, NY, 208--215.]]
[9]
Biasotti, S., Marini, S., Mortara, M., Patanè, G., Spagnuolo, M., and Falcidieno, B. 2003. 3D shape matching through topological structures. In Proceedings of the 11th International Conference on Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science, Vol. 2886. Springer, 194--203.]]
[10]
Böhm, C., Berchtold, S., and Keim, D. A. 2001. Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases. ACM Comput. Surv. 33, 3, 322--373.]]
[11]
Bustos, B., Keim, D. A., Saupe, D., Schreck, T., and Vranić, D. 2004a. Automatic selection and combination of descriptors for effective 3D similarity search. In Proceedings of the IEEE International Workshop on Multimedia Content-based Analysis and Retrieval. IEEE Computer Society, 514--521.]]
[12]
Bustos, B., Keim, D. A., Saupe, D., Schreck, T., and Vranić, D. 2004b. Using entropy impurity for improved 3D object similarity search. In Proceedings of the IEEE International Conference on Multimedia and Expo. IEEE, 1303--1306.]]
[13]
Bustos, B., Keim, D. A., Saupe, D., Schreck, T., and Vranić, D. 2005. An experimental effectiveness comparison of methods for 3D similarity search. J. Digital Libraries. Springer-Verlag.]]
[14]
Campbell, R. J. and Flynn, P. J. 2001. A survey of free-form object representation and recognition techniques. Comput. Vision Image Understand. 81, 2, 166--210.]]
[15]
Chávez, E., Navarro, G., Baeza-Yates, R., and Marroquín, J. L. 2001. Searching in metric spaces. ACM Comput. Surv. 33, 3, 273--321.]]
[16]
Chen, D.-Y., Tian, X.-P., Shen, Y.-T., and Ouhyoung, M. 2003. On visual similarity based 3D model retrieval. Computer Graphics Forum 22, 3, 223--232.]]
[17]
Cyr, C. M. and Kimia, B. B. 2004. A similarity-based aspect-graph approach to 3D object recognition. Int. J. Comput. Vision 57, 1, 5--22.]]
[18]
de Alarcón, P. A., Pascual-Montano, A. D., and Carazo, J. M. 2002. Spin images and neural networks for efficient content-based retrieval in 3D object databases. In Proceedings of the International Conference on Image and Video Retrieval (CIVR'02). Springer-Verlag, London, UK, 225--234.]]
[19]
Elad, M., Tal, A., and Ar, S. 2002. Content based retrieval of VRML objects: an iterative and interactive approach. In Proceedings of the 6th Eurographics Workshop on Multimedia 2001. Springer-Verlag New York, NY, 107--118.]]
[20]
Faloutsos, C. 1996. Searching Multimedia Databases by Content. Kluwer Academic Publishers, Norwell, MA.]]
[21]
Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., and Jacobs, D. 2003. A search engine for 3D models. ACM Trans. Graph. 22, 1, 83--105.]]
[22]
Gagvani, N. and Silver, D. 1999. Parameter-controlled volume thinning. Graph. Models Image Process. 61, 3, 149--164.]]
[23]
Geradts, Z., Hardy, H., Poortman, A., and Bijhold, J. 2001. Evaluation of contents-based image retrieval methods for a database of logos on drug tablets. In Proceedings of SPIE Enabling Technologies for Law Enforcement and Security. Vol. 4232, 553--562.]]
[24]
Healy, D. M., Rockmore, D. N., Kostelec, P. J., and Moore, S. S. B. 2003. FFTs for the 2-sphere - Improvements and variations. J. Fourier Analy. Appl. 9, 4, 341--385.]]
[25]
Heczko, M., Keim, D. A., Saupe, D., and Vranić, D. 2002. Methods for similarity search on 3D databases. Datenbank-Spektrum 2, 2, 54--63. (In German).]]
[26]
Hilaga, M., Shinagawa, Y., Kohmura, T., and Kunii, T. L. 2001. Topology matching for fully automatic similarity estimation of 3D shapes. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'01). ACM Press, New York, NY, 203--212.]]
[27]
Horn, B. 1984. Extended Gaussian image. Proceedings of the IEEE 72, 12, 1671--1686.]]
[28]
Ip, C. Y., Lapadat, D., Sieger, L., and Regli, W. C. 2002. Using shape distributions to compare solid models. In Proceedings of the 7th ACM Symposium on Solid Modeling and Applications (SMA'02). ACM Press, New York, NY, 273--280.]]
[29]
Ip, C. Y., Regli, W. C., Sieger, L., and Shokoufandeh, A. 2003. Automated learning of model classifications. In Proceedings of the 8th ACM Symposium on Solid Modeling and Applications (SM'03). ACM Press, New York, NY, 322--327.]]
[30]
Ip, H. and Wong, W. 2002. 3D head models retrieval based on hierarchical facial region similarity. In Proceedings of the 15th International Conference on Vision Interface. 314--319.]]
[31]
Johnson, A. E. 1997. Spin-images: A representation for 3-D surface matching. Ph.D. thesis, Robotics Institute, Carnegie Mellon University.]]
[32]
Johnson, A. E. and Hebert, M. 1998. Surface matching for object recognition in complex three-dimensional scenes. Image Vision Comput. 16, 9--10, 635--651.]]
[33]
Johnson, A. E. and Hebert, M. 1999. Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21, 5, 433--449.]]
[34]
Kang, S. B. and Ikeuchi, K. 1993. The complex egi: A new representation for 3-d pose determination. IEEE Trans. Pattern Anal. Mach. Intell. 15, 7, 707--721.]]
[35]
Kato, T., Suzuki, M., and Otsu, N. 2000. A similarity retrieval of 3D polygonal models using rotation invariant shape descriptors. In Proceedings of the IEEE International Conference on Systems, Man Management, and Cybernetics. 2946--2952.]]
[36]
Kazhdan, M., Chazelle, B., Dobkin, D., Funkhouser, T., and Rusinkiewicz, S. 2003. A reflective symmetry descriptor for 3D models. Algorithmica 38, 1, 201--225.]]
[37]
Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2004. Shape matching and anisotropy. ACM Trans. Graph. 23, 3, 623--629.]]
[38]
Keim, D. A. 1999. Efficient geometry-based similarity search of 3D spatial databases. In Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data (SIGMOD'99). ACM Press, New York, NY, 419--430.]]
[39]
Kriegel, H.-P., Brecheisen, S., Krüger, P., Pfeifle, M., and Schubert, M. 2003. Using sets of feature vectors for similarity search on voxelized CAD objects. In Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data (SIGMOD'03). ACM Press, New York, NY, 587--598.]]
[40]
Leifman, G., Katz, S., Tal, A., and Meir, R. 2003. Signatures of 3D models for retrieval. In Proceedings of the 4th Israel-Korea Bi-National Conference on Geometric Modeling and Computer Graphics. 159--163.]]
[41]
Löffler, J. 2000. Content-based retrieval of 3D models in distributed web databases by visual shape information. In Proceedings of the International Conference on Information Visualisation (IV'00). IEEE Computer Society, Washington, DC, 82.]]
[42]
Loncaric, S. 1998. A survey of shape analysis techniques. Pattern Recog. 31, 8, 983--1001.]]
[43]
Lou, K., Prabhakar, S., and Ramani, K. 2004. Content-based three-dimensional engineering shape search. In Proceedings of the 20th International Conference on Data Engineering (ICDE'04). IEEE Computer Society, Washington, DC, 754--765.]]
[44]
McWherter, D., Peabody, M., Regli, W. C., and Shokoufandeh, A. 2001. Transformation invariant shape similarity comparison of solid models. In ASME Design Engineering Technical Conferences, 6th Design for Manufacturing Conference (DETC 2001/DFM-21191).]]
[45]
McWherter, D., Peabody, M., Shokoufandeh, A. C., and Regli, W. 2001. Database techniques for archival of solid models. In Proceedings of the 6th ACM Symposium on Solid Modeling and Applications (SMA'01). ACM Press, New York, NY, 78--87.]]
[46]
Ngu, A. H. H., Sheng, Q. Z., Huynh, D. Q., and Lei, R. 2001. Combining multi-visual features for efficient indexing in a large image database. VLDB J. 9, 4, 279--293.]]
[47]
Novotni, M. and Klein, R. 2001a. Geometric 3D comparison - An application. In ECDL WS Generalized Documents.]]
[48]
Novotni, M. and Klein, R. 2001b. A geometric approach to 3D object comparison. In Proceedings of the International Conference on Shape Modeling & Applications (SMI'01). IEEE Computer Society, Washington, DC, 167--175.]]
[49]
Novotni, M. and Klein, R. 2003. 3D Zernike descriptors for content based shape retrieval. In Proceedings of the 8th ACM Symposium on Solid Modeling and Applications (SM'03). ACM Press, New York, NY, 216--225.]]
[50]
Novotni, M. and Klein, R. 2004. Shape retrieval using 3d zernike descriptors. Comput. Aid. Design 36, 11, 1047--1062.]]
[51]
Ohbuchi, R., Minamitani, T., and Takei, T. 2003. Shape-similarity search of 3D models by using enhanced shape functions. In Proceedings of the Theory and Practice of Computer Graphics (TPCG'03). IEEE Computer Society, Washington, DC, 97.]]
[52]
Ohbuchi, R., Otagiri, T., Ibato, M., and Takei, T. 2002. Shape-similarity search of three-dimensional models using parameterized statistics. In Proceedings of the 10th Pacific Conference on Computer Graphics and Applications (PG'02). IEEE Computer Society, Washington, DC, 265--274.]]
[53]
Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D. 2002. Shape distributions. ACM Trans. Graph. 21, 4, 807--832.]]
[54]
Paquet, E., Murching, A., Naveen, T., Tabatabai, A., and Rioux, M. 2000. Description of shape information for 2-D and 3-D objects. Signal Process. Image Comm. 16, 103--122.]]
[55]
Paquet, E. and Rioux, M. 2000. Nefertiti: A tool for 3-D shape databases management. Image Vision Comput. 108, 387--393.]]
[56]
Puzicha, J., Buhmann, J. M., Rubner, Y., and Tomasi, C. 1999. Empirical evaluation of dissimilarity measures for color and texture. In Proceedings of the International Conference on Computer Vision-Volume 2 (ICCV'99). IEEE Computer Society, Washington, DC, 1165--1173.]]
[57]
Ronneberger, O., Burkhardt, H., and Schultz, E. 2002. General-purpose object recognition in 3D volume data sets using gray-scale invariants - classification of airborne pollen-grains recorded with a confocal laser scanning microscope. In Proceedings of the 16th International Conference on Pattern Recognition. Vol. 2. IEEE Computer Society, 290--295.]]
[58]
Rubner, Y., Tomasi, C., and Guibas, L. J. 1998. A metric for distributions with applications to image databases. In Proceedings of the 6th International Conference on Computer Vision (ICCV'98). IEEE Computer Society, Washington, DC, 59--66.]]
[59]
Sánchez-Cruz, H. and Bribiesca, E. 2003. A method of optimum transformation of 3D objects used as a measure of shape dissimilarity. Image Vision Comput. 21, 11, 1027--1036.]]
[60]
Seidl, T. and Kriegel, H.-P. 1997. Efficient user-adaptable similarity search in large multimedia databases. In Proceedings of the 23rd International Conference on Very Large Data Bases (VLDB'97). Morgan Kaufmann Publishers Inc., San Francisco, CA, 506--515.]]
[61]
Shamir, A., Sharf, A., and Cohen-Or, D. 2003. Enhanced hierarchical shape matching for shape transformation. Int. J. Shape Model. 9, 2.]]
[62]
Shilane, P., Min, P., Kazhdan, M., and Funkhouser, T. 2004. The Princeton shape benchmark. In Proceedings of the Shape Modeling International 2004 (SMI'04). IEEE Computer Society, Washington, DC, 167--178.]]
[63]
Shokoufandeh, A. and Dickinson, S. J. 2001. A unified framework for indexing and matching hierarchical shape structures. In Proceedings of the 4th International Workshop on Visual Form (IWVF-4). Springer-Verlag, London, UK, 67--84.]]
[64]
Shum, H.-Y., Hebert, M., and Ikeuchi:, K. 1996. On 3D shape similarity. In Proceedings of the 1996 Conference on Computer Vision and Pattern Recognition (CVPR'96). IEEE Computer Society, Washington, DC, 526--531.]]
[65]
Siddiqi, K., Shokoufandeh, A., Dickinson, S. J., and Zucker, S. W. 1998. Shock graphs and shape matching. In Proceedings of the 6th International Conference on Computer Vision (ICCV'98). IEEE Computer Society, Washington, DC, 222--229.]]
[66]
Song, J.-J. and Golshani, F. 2002. 3D object retrieval by shape similarity. In Proceedings of the 13th International Conference on Database and Expert Systems Applications (DEXA'02). Springer-Verlag, London, UK, 851--860.]]
[67]
Sundar, H., Silver, D., Gagvani, N., and Dickinson, S. J. 2003. Skeleton based shape matching and retrieval. In Proceedings of the Shape Modeling International (SMI'03). IEEE Computer Society, Washington, DC, 130--142.]]
[68]
Tangelder, J. and Veltkamp, R. 2003. Polyhedral model retrieval using weighted point sets. Int. J. Image and Graphics 3, 1, 209--229.]]
[69]
Teodoro, M. L., Phillips, G. N., and Kavraki, L. E. 2001. Molecular docking: A problem with thousands of degrees of freedom. In Proceedings of the IEEE International Conference on Robotics and Automation. IEEE, 960--966.]]
[70]
Vranić, D. 2003. An improvement of rotation invariant 3D shape descriptor based on functions on concentric spheres. In Proceedings of the IEEE International Conference on Image Processing. Vol. 3. IEEE, 757--760.]]
[71]
Vranic, D. 2004. 3D model retrieval. Ph.D. thesis, University of Leipzig, Germany.]]
[72]
Vranić, D. and Saupe, D. 2000. 3D model retrieval. In Proceedings of the Spring Conference on Computer Graphics and its Applications. Comenius University, 89--93.]]
[73]
Vranić, D. and Saupe, D. 2001a. 3D model retrieval with spherical harmonics and moments. In Proceedings of the 23rd DAGM-Symposium on Pattern Recognition. Springer-Verlag, London, UK, 392--397.]]
[74]
Vranić, D. and Saupe, D. 2001b. 3D shape descriptor based on 3D fourier transform. In Proceedings of the EURASIP Conference on Digital Signal Processing for Multimedia Communications and Services. Comenius University, 271--274.]]
[75]
Vranić, D. and Saupe, D. 2002. Description of 3D-shape using a complex function on the sphere. In Proceedings of the IEEE International Conference on Multimedia and Expo. 177--180.]]
[76]
Vranić, D., Saupe, D., and Richter, J. 2001. Tools for 3D-object retrieval: Karhunen-Loeve transform and spherical harmonics. In Proceedings of the IEEE 4th Workshop on Multimedia Signal Processing. 293--298.]]
[77]
Zaharia, T. and Prêteux, F. 2001. Three-dimensional shape-based retrieval within the MPEG-7 framework. In Proceedings of the SPIE Conference on Nonlinear Image Processing and Pattern Analysis XII. 133--145.]]
[78]
Zaharia, T. and Prêteux, F. 2002. Shape-based retrieval of 3D mesh models. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME'02).]]
[79]
Zhang, C. and Chen, T. 2001. Indexing and retrieval of 3D models aided by active learning. In Proceedings of the 9th ACM International Conference on Multimedia (MULTIMEDIA'01). ACM Press, New York, NY, 615--616.]]

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys  Volume 37, Issue 4
December 2005
111 pages
ISSN:0360-0300
EISSN:1557-7341
DOI:10.1145/1118890
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 December 2005
Published in CSUR Volume 37, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. 3D model retrieval
  2. content-based similarity search

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)89
  • Downloads (Last 6 weeks)6
Reflects downloads up to 25 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media