skip to main content
research-article

Strongly Minimal Self-Conjugate Linearizations for Polynomial and Rational Matrices

Published: 01 January 2022 Publication History

Abstract

We prove that we can always construct strongly minimal linearizations of an arbitrary rational matrix from its Laurent expansion around the point at infinity, which happens to be the case for polynomial matrices expressed in the monomial basis. If the rational matrix has a particular self-conjugate structure, we show how to construct strongly minimal linearizations that preserve it. The structures that are considered are the Hermitian and skew-Hermitian rational matrices with respect to the real line, and the para-Hermitian and para-skew-Hermitian matrices with respect to the imaginary axis. We pay special attention to the construction of strongly minimal linearizations for the particular case of structured polynomial matrices. The proposed constructions lead to efficient numerical algorithms for constructing strongly minimal linearizations. The fact that they are valid for any rational matrix is an improvement on any other previous approach for constructing other classes of structure preserving linearizations, which are not valid for any structured rational or polynomial matrix. The use of the recent concept of strongly minimal linearization is the key for getting such generality. Strongly minimal linearizations are Rosenbrock's polynomial system matrices of the given rational matrix, but with a quadruple of linear polynomial matrices (i.e., pencils): $L(\lambda):=\Big[\begin{array}{ccc} A(\lambda) & -B(\lambda) \\ C(\lambda) & D(\lambda) \end{array}\Big]$, where $A(\lambda)$ is regular, and the pencils $ \left[\begin{array}{ccc} A(\lambda) & -B(\lambda) \end{array}\right]$ and $ \Big[\begin{array}{ccc} A(\lambda) \\ C(\lambda) \end{array}\Big]$ have no finite or infinite eigenvalues. Strongly minimal linearizations contain the complete information about the zeros, poles, and minimal indices of the rational matrix and allow one to very easily recover its eigenvectors and minimal bases. Thus, they can be combined with algorithms for the generalized eigenvalue problem for computing the complete spectral information of the rational matrix.

References

[1]
A. Amparan, F.M. Dopico, S. Marcaida, and I. Zaballa, Strong linearizations of rational matrices, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 1670--1700, https://doi.org/10.1137/16M1099510.
[2]
A. Amparan, F.M. Dopico, S. Marcaida, and I. Zaballa, On minimal bases and indices of rational matrices and their linearizations, Linear Algebra Appl., 623 (2021), pp. 14--67.
[3]
A. Amparan, S. Marcaida, and I. Zaballa, Finite and infinite structures of rational matrices: A local approach, Electron. J. Linear Algebra, 30 (2015), pp. 196--226.
[4]
L.M. Anguas, F.M. Dopico, R. Hollister, and D.S. Mackey, Van Dooren's index sum theorem and rational matrices with prescribed structural data, SIAM J. Matrix Anal. Appl., 40 (2019), pp. 720--738, https://doi.org/10.1137/18M1171370.
[5]
E.N. Antoniou and S. Vologiannidis, Linearizations of polynomial matrices with symmetries and their applications, Electron. J. Linear Algebra, 15 (2006), pp. 107--114.
[6]
T. Betcke, N.J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur, NLEVP: A collection of nonlinear eigenvalue problems, ACM Trans. Math. Software 39 (2013), 7.
[7]
R. Byers, V. Mehrmann, and H. Xu, A structured staircase algorithm for skew-symmetric/symmetric pencils, Electron. Trans. Numer. Anal., 26 (2007), pp. 1--33.
[8]
M.I. Bueno, K. Curlett, and S. Furtado, Structured strong linearizations from Fiedler pencils with repetition I, Linear Algebra Appl., 460 (2014), pp. 51--80.
[9]
M.I. Bueno, F.M. Dopico, J. Pérez, R. Saavedra, and B. Zykoski, A simplified approach to Fiedler-like pencils via block minimal bases pencils, Linear Algebra Appl., 547 (2018), pp. 45--104.
[10]
R.K. Das and R. Alam, Affine spaces of strong linearizations for rational matrices and the recovery of eigenvectors and minimal bases, Linear Algebra Appl., 569 (2019), pp. 335--368.
[11]
R.K. Das and R. Alam, Structured strong linearizations of structured rational matrices, Linear Multilinear Algebra, (2021), to appear, https://doi.org/10.1080/03081087.2021.1945525.
[12]
F. De Terán, F.M. Dopico, and D.S. Mackey, Linearizations of singular matrix polynomials and the recovery of minimal indices, Electron. J. Linear Algebra, 18 (2009), pp. 371--402.
[13]
F. De Terán, F.M. Dopico, and D.S. Mackey, Spectral equivalence of matrix polynomials and the index sum theorem, Linear Algebra Appl., 459 (2014), pp. 264--333.
[14]
F.M. Dopico, P.W. Lawrence, J. Pérez, and P. Van Dooren, Block Kronecker linearizations of matrix polynomials and their backward errors, Numer. Math., 140 (2018), pp. 373--426.
[15]
F.M. Dopico, S. Marcaida, and M.C. Quintana, Strong linearizations of rational matrices with polynomial part expressed in an orthogonal basis, Linear Algebra Appl., 570 (2019), pp. 1--45.
[16]
F.M. Dopico, S. Marcaida, M.C. Quintana, and P. Van Dooren, Local linearizations of rational matrices with application to rational approximations of nonlinear eigenvalue problems, Linear Algebra Appl., 604 (2020), pp. 441--475.
[17]
F.M. Dopico, J. Pérez, and P. Van Dooren, Structured backward error analysis of linearized structured polynomial eigenvalue problems, Math. Comp., 88 (2019), pp. 1189--1228.
[18]
F.M. Dopico, M.C. Quintana, and P. Van Dooren, Linear system matrices of rational transfer functions, in Realization and Model Reduction of Dynamical Systems: A Festschrift in honor of the 70th birthday of Thanos Antoulas, C. Beattie, P. Benner, M. Embree, S. Gugercin, and S. Lefteriueds, eds., Springer, Cham, 2022, to appear, https://doi.org/10.1007/978-3-030-95157-3_6.
[19]
Z. Drmač and I.Š. Glibić, New numerical algorithm for deflation of infinite and zero eigenvalues and full solution of quadratic eigenvalue problems, ACM Trans. Math. Software, 46 (2020), 30.
[20]
H. Fassbender, J. Pérez, and N. Shayanfar, Constructing symmetric structure-preserving strong linearizations, ACM Commun. Comput. Algebra, 50 (2016), pp. 167--169.
[21]
H. Fassbender and P. Saltenberger, On vector spaces of linearizations for matrix polynomials in orthogonal bases, Linear Algebra Appl., 525 (2017), pp. 59--83.
[22]
G.D. Forney, Jr., Minimal bases of rational vector spaces, with applications to multivariable linear systems, SIAM J. Control, 13 (1975), pp. 493--520, https://doi.org/10.1137/0313029.
[23]
F.R. Gantmacher, The Theory of Matrices, Vols. I and II, Chelsea, New York, 1959, translated by K. A. Hirsch.
[24]
Y. Genin, Y. Hachez, Y. Nesterov, R. Stefan, P. Van Dooren, and S. Xu, Positivity and linear matrix inequalities, Eur. J. Control, 8 (2002), pp. 275--298.
[25]
G.M.L. Gladwell, Inverse Problems in Vibration, 2nd ed., Kluwer Academic, Dordrecht, 2004.
[26]
I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials, Classics Appl. Math. 58, SIAM, 2009, https://doi.org/10.1137/1.9780898719024.
[27]
G. Golub and C.F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, 1996.
[28]
S. Hammarling, C.J. Munro, and F. Tisseur, An algorithm for the complete solution of quadratic eigenvalue problems, ACM Trans. Math. Software, 39 (2013), 18.
[29]
C. Heij, A. Ran, and F. van Schagen, Introduction to Mathematical Systems Theory: Linear Systems, Identification and Control, Birkhäuser Verlag, Basel, 2007.
[30]
G. Heinig and K. Rost, Algebraic Methods for Toeplitz-like Matrices and Operators, Oper. Theory Adv. Appl. 13, Birkhäuser Verlag, Basel, 2013.
[31]
N.J. Higham, D.S. Mackey, N. Mackey, and F. Tisseur, Symmetric linearizations for matrix polynomials, SIAM J. Matrix Anal. Appl., 29 (2006), pp. 143--159, https://doi.org/10.1137/050646202.
[32]
T. Kailath, Linear Systems, Prentice Hall, Englewood Cliffs, NJ, 1980.
[33]
D. Kressner, C. Schröder, and D.S. Watkins, Implicit QR algorithm for palindromic and even eigenvalue problems, Numer. Algorithms, 51 (2009), pp. 209--238.
[34]
P. Lancaster, Lambda-Matrices and Vibrating Systems, Pergamon Press, Oxford, UK, 1966.
[35]
P. Lancaster, Strongly stable gyroscopic systems, Electron. J. Linear Algebra, 5 (1999), pp. 53--66.
[36]
D.S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Vector spaces of linearizations for matrix polynomials, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 971--1004, https://doi.org/10.1137/050628350.
[37]
D.S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Structured polynomial eigenvalue problems: Good vibrations from good linearizations, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 1029--1051, https://doi.org/10.1137/050628362.
[38]
D.S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Jordan structures of alternating matrix polynomials, Linear Algebra Appl., 432 (2010), pp. 867--891.
[39]
V. Markine, A.D. Man, S. Jovanovic, and C. Esveld, Optimal design of embedded rail structure for high-speed railway lines, in Proceedings of the 3rd International Conference on Railway Engineering, London, 2000.
[40]
C. Mehl, Jacobi-like algorithms for the indefinite generalized Hermitian eigenvalue problem, SIAM J. Matrix Anal. Appl., 25 (2004), pp. 964--985, https://doi.org/10.1137/S089547980240947X.
[41]
V. Mehrmann, C. Schröder, and V. Simoncini, An implicitly-restarted Krylov subspace method for real symmetric/skew-symmetric eigenproblems, Linear Algebra Appl., 436 (2012), pp. 4070--4087.
[42]
V. Mehrmann and D. Watkins, Structure-preserving methods for computing eigenpairs of large sparse skew-Hamiltonian/Hamiltonian pencils, SIAM J. Sci. Comput., 22 (2001), pp. 1905--1925, https://doi.org/10.1137/S1064827500366434.
[43]
C. Moler and G.W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal., 10 (1973), pp. 241--256, https://doi.org/10.1137/0710024.
[44]
A.C.M. Ran, Necessary and sufficient conditions for existence of J-spectral factorization for para-Hermitian rational matrix functions, Automatica J. IFAC, 39 (2003), pp. 1935--1939.
[45]
A.C.M. Ran and L. Rodman, Stable invariant Lagrangian subspaces: Factorization of symmetric rational matrix functions and other applications, Linear Algebra Appl., 137/138 (1990), pp. 575--620.
[46]
H.H. Rosenbrock, State-Space and Multivariable Theory, John Wiley & Sons, New York, 1970.
[47]
C. Schröder, Palindromic and Even Eigenvalue Problems - Analysis and Numerical Methods, Ph.D. Dissertation, Technische Universität Berlin, Berlin, Germany, 2008.
[48]
F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001), pp. 235--286, https://doi.org/10.1137/S0036144500381988.
[49]
P. Van Dooren, The computation of Kronecker's canonical form of a singular pencil, Linear Algebra Appl., 27 (1979), pp. 103--141.
[50]
P. Van Dooren, The generalized eigenstructure problem in linear system theory, IEEE Trans. Automat. Control, 26 (1981), pp. 111--129.
[51]
P. Van Dooren, A generalized eigenvalue approach for solving Riccati equations, SIAM J. Sci. Statist. Comput., 2 (1981), pp. 121--135, https://doi.org/10.1137/0902010.
[52]
P. Van Dooren and P. Dewilde, The eigenstructure of an arbitrary polynomial matrix: Computational aspects, Linear Algebra Appl., 50 (1983), pp. 545--579.
[53]
P. Van Dooren, P. Dewilde, and J. Vandewalle, On the determination of the Smith-McMillan form of a rational matrix from its Laurent expansion, IEEE Trans. Circuit Syst., 26 (1979), pp. 180--189.
[54]
G. Verghese, Comments on “Properties of the system matrix of a generalized state-space system,'' Internat. J. Control, 31 (1980), pp. 1007--1009.
[55]
G. Verghese, P. Van Dooren, and T. Kailath, Properties of the system matrix of a generalized state-space system, Internat. J. Control, 30 (1979), pp. 235--243.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications  Volume 43, Issue 3
Sep 2022
494 pages
ISSN:0895-4798
DOI:10.1137/sjmael.43.3
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2022

Author Tags

  1. structured realizations
  2. structured linearizations
  3. strong minimality
  4. self-conjugate rational matrices

Author Tags

  1. 65F15
  2. 15A18
  3. 15A22
  4. 15A54
  5. 93B18
  6. 93B20
  7. 93B60

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media