skip to main content
research-article

Stability Results for Backward Nonlinear Diffusion Equations with Temporal Coupling Operator of Local and Nonlocal Type

Published: 01 January 2022 Publication History

Abstract

In this paper, we investigate the problem of reconstructing the historical distribution for a nonlinear diffusion equation, in which the diffusion is driven by not only a nonlocal operator but also a locally one. The problem naturally arises in many real-world applications including the biological population dynamic where a population competes for the resources and diffuses by a combination of classical and nonlocal dispersal processes. By using the Banach fixed point theorem and some appropriate estimates, we first construct an example to show the ill-posedness of the problem. Next, we propose a filter regularization method written in form of a nonlinear Volterra integral equation, in combination with the new technique recently developed calling the globally Lipschitz approximation. Finally, several numerical tests, with a combination of the finite difference schemes and the fast Fourier transform (FFT) algorithm, are also presented to illustrate the theoretical results.

References

[1]
N. Abatangelo and M. Cozzi, An elliptic boundary value problem with fractional nonlinearity, SIAM J. Math. Anal., 53 (2021), pp. 3577--3601, https://doi.org/10.1137/20M1342641.
[2]
F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi, and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Math. Surveys Monogr. 165, AMS, Providence, RI, 2010.
[3]
G. Barles, E. Chasseigne, A. Ciomaga, and C. Imbert, Lipschitz regularity of solutions for mixed integro-differential equations, J. Differential Equations, 252 (2012), pp. 6012--6060, https://doi.org/10.1016/j.jde.2012.02.013.
[4]
G. Barles, E. Chasseigne, A. Ciomaga, and C. Imbert, Large time behavior of periodic viscosity solutions for uniformly parabolic integro-differential equations, Calc. Var. Partial Differential Equations, 50 (2014), pp. 283--304, https://doi.org/10.1007/s00526-013-0636-2.
[5]
D. Blazevski and D. del Castillo-Negrete, Local and nonlocal anisotropic transport in reversed shear magnetic fields: Shearless cantori and nondiffusive transport, Phys. Rev. E, 87 (2013), 063106.
[6]
C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lect. Notes Union Matematica Italiana 20, Springer, New York, 2016.
[7]
B. C. dos Santos, S. M. Oliva, and J. D. Rossi, A local/nonlocal diffusion model, Appl. Anal., (2021), pp. 1--34.
[8]
X. Cabré and J. Serra, An extension problem for sums of fractional Laplacians and 1-D symmetry of phase transitions, Nonlinear Anal., 137 (2016), pp. 246--265, https://doi.org/10.1016/j.na.2015.12.014.
[9]
L. Caffarelli and E. Valdinoci, A priori bounds for solutions of a nonlocal evolution PDE, in Analysis and Numerics of Partial Differential Equations, Springer INdAM Ser. 4, Springer, Milan, 2013, pp. 141--163, https://doi.org/10.1007/978-88-470-2592-9_10.
[10]
L. Cesbron, On the Derivation of Non-local Diffusion Equations in Confined Spaces, Ph.D. thesis, University of Cambridge, 2017.
[11]
D. del Castillo-Negrete and L. Chacon, Local and nonlocal parallel heat transport in general magnetic fields, Phys. Rev. Lett., 106 (2011), 195004.
[12]
D. del Castillo-Negrete and L. Chacon, Parallel heat transport in integrable and chaotic magnetic fields, Physics of Plasmas, 19 (2012), 056112.
[13]
F. Dell'Oro and V. Pata, Second order linear evolution equations with general dissipation, Appl. Math. Optim., 83 (2019), pp. 1877--1917.
[14]
S. Dipierro, E. P. Lippi, and E. Valdinoci, (Non)local Logistic Equations with Neumann Conditions, preprint, arXiv:2101.02315, 2021.
[15]
S. Dipierro, E. P. Lippi, and E. Valdinoci, Linear theory for a mixed operator with Neumann conditions, Asymptot. Anal., to appear.
[16]
S. Dipierro and E. Valdinoci, Description of an ecological niche for a mixed local/nonlocal dispersal: An evolution equation and a new Neumann condition arising from the superposition of Brownian and Lévy processes, Phys. A, 575 (2021), 126052, https://doi.org/10.1016/j.physa.2021.126052.
[17]
S. Dipierro, E. Valdinoci, and V. Vespri, Decay estimates for evolutionary equations with fractional time-diffusion, J. Evol. Equ., 19 (2019), pp. 435--462, https://doi.org/10.1007/s00028-019-00482-z.
[18]
O. K. Dudko, A. M. Berezhkovskii, and G. H. Weiss, Time-dependent diffusion coefficients in periodic porous materials, J. Physical Chemistry B, 109 (2005), pp. 21296--21299.
[19]
A. Einstein, On the movement of small particles suspended in stationary liquids required by the molecularkinetic theory of heat, Ann. D. Phys., 17 (1905), p. 1.
[20]
C.-L. Fu, X.-T. Xiong, and Z. Qian, Fourier regularization for a backward heat equation, J. Math. Anal. Appl., 331 (2007), pp. 472--480, https://doi.org/10.1016/j.jmaa.2006.08.040.
[21]
D. N. D. Hai, Hölder-logarithmic type approximation for nonlinear backward parabolic equations connected with a pseudo-differential operator, Commun. Pure Appl. Anal., 21 (2022), pp. 1715--1734 https://doi.org/10.3934/cpaa.2022043.
[22]
D. N. D. Hai and D. D. Trong, The backward problem for a nonlinear Riesz-Feller diffusion equation, Acta Math. Vietnam., 43 (2018), pp. 449--470, https://doi.org/10.1007/s40306-018-0255-2.
[23]
D. N. Hào and N. V. Duc, Stability results for the heat equation backward in time, J. Math. Anal. Appl., 353 (2009), pp. 627--641, https://doi.org/10.1016/j.jmaa.2008.12.018.
[24]
D. N. Hào and N. V. Duc, Stability results for backward parabolic equations with time-dependent coefficients, Inverse Problems, 27 (2011), 025003, https://doi.org/10.1088/0266-5611/27/2/025003.
[25]
D. N. Hào and N. V. Duc, A non-local boundary value problem method for semi-linear parabolic equations backward in time, Appl. Anal., 94 (2015), pp. 446--463, https://doi.org/10.1080/00036811.2014.970537.
[26]
D. N. Hào, N. V. Duc, and N. V. Thang, Backward semi-linear parabolic equations with time-dependent coefficients and local Lipschitz source, Inverse Problems, 34 (2018), pp. 055010, https://doi.org/10.1088/1361-6420/aab8cb.
[27]
B. I. Henry, T. A. Langlands, and P. Straka, An introduction to fractional diffusion, in Complex Physical, Biophysical and Econophysical Systems, World Scientific, River Edge, NJ, 2010, pp. 37--89.
[28]
M. Hildebrand, H. Skødt, and K. Showalter, Spatial symmetry breaking in the Belousov-Zhabotinsky reaction with light-induced remote communication, Phys. Rev. Lett., 87 (2001), 088303.
[29]
E. R. Jakobsen and K. H. Karlsen, Continuous dependence estimates for viscosity solutions of integro-PDEs, J. Differential Equations, 212 (2005), pp. 278--318, https://doi.org/10.1016/j.jde.2004.06.021.
[30]
E. R. Jakobsen and K. H. Karlsen, A “maximum principle for semicontinuous functions” applicable to integro-partial differential equations, NoDEA Nonlinear Differential Equations Appl., 13 (2006), pp. 137--165, https://doi.org/10.1007/s00030-005-0031-6,.
[31]
M. Karimi, F. Moradlou, and M. Hajipour, Regularization technique for an inverse space-fractional backward heat conduction problem, J. Sci. Comput., 83 (2020), 37, https://doi.org/10.1007/s10915-020-01211-2.
[32]
T. T. Khieu and T. Q. Khanh, Fractional filter method for recovering the historical distribution for diffusion equations with coupling operator of local and nonlocal type, Numer. Algorithms, 89 (2022), pp. 1743--1767, https://doi.org/10.1007/s11075-021-01171-0.
[33]
T. T. Khieu and H.-H. Vo, Recovering the historical distribution for nonlinear space-fractional diffusion equation with temporally dependent thermal conductivity in higher dimensional space, J. Comput. Appl. Math., 345 (2019), pp. 114--126, https://doi.org/10.1016/j.cam.2018.06.018.
[34]
Q. Liu, F. Liu, I. Turner, and V. Anh, Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method, J. Comput. Phys., 222 (2007), pp. 57--70, https://doi.org/10.1016/j.jcp.2006.06.005.
[35]
N. T. Long and A. P. N. Dinh, Approximation of a parabolic non-linear evolution equation backwards in time, Inverse Problems, 10 (1994), pp. 905--914, http://stacks.iop.org/0266-5611/10/905.
[36]
R. Metzler, A. V. Chechkin, and J. Klafter, Levy statistics and anomalous transport: Levy flights and subdiffusion, in Computational Complexity, Springer, New York, 2012, pp. 1724--1745, https://doi.org/10.1007/978-1-4614-1800-9_111.
[37]
T. L. Minh, T. T. Khieu, T. Q. Khanh, and H.-H. Vo, On a space fractional backward diffusion problem and its approximation of local solution, J. Comput. Appl. Math., 346 (2019), pp. 440--455, https://doi.org/10.1016/j.cam.2018.07.016.
[38]
A. Morita and B. Bagchi, Time dependent diffusion coefficient and the transient dynamics of diffusion controlled bimolecular reactions in liquids: A mode coupling theory analysis, J. Chemical Physics, 110 (1999), pp. 8643--8652.
[39]
E. M. Nicola, M. Bär, and H. Engel, Wave instability induced by nonlocal spatial coupling in a model of the light-sensitive Belousov-Zhabotinsky reaction, Phys. Rev. E, 73 (2006), 066225.
[40]
J. S. Petersen, C. A. Mack, J. L. Sturtevant, J. D. Byers, and D. A. Miller, Nonconstant diffusion coefficients: Short description of modeling and comparison to experimental results, in Advances in Resist Technology and Processing XII, Proc. SPIE 2438, International Society for Optics and Photonics, 1995, pp. 167--181.
[41]
Z. Qian and X. Feng, A fractional Tikhonov method for solving a Cauchy problem of Helmholtz equation, Appl. Anal., 96 (2017), pp. 1656--1668, https://doi.org/10.1080/00036811.2016.1254776.
[42]
P. H. Quan, D. D. Trong, and L. M. Triet, On a backward nonlinear parabolic equation with time and space dependent thermal conductivity: Regularization and error estimates, J. Inverse Ill-Posed Probl., 22 (2014), pp. 375--401, https://doi.org/10.1515/jip-2012-0012.
[43]
D. D. Trong, B. T. Duy, and M. N. Minh, Backward heat equations with locally Lipschitz source, Appl. Anal., 94 (2015), pp. 2023--2036, https://doi.org/10.1080/00036811.2014.963063.
[44]
D. D. Trong, D. N. D. Hai, and N. D. Minh, Stepwise regularization method for a nonlinear Riesz-Feller space-fractional backward diffusion problem, J. Inverse Ill-Posed Probl., 27 (2019), pp. 759--775, https://doi.org/10.1515/jiip-2018-0033.
[45]
J. Wu and K. M. Berland, Propagators and time-dependent diffusion coefficients for anomalous diffusion, Biophys. J., 95 (2008), pp. 2049--2052.
[46]
G.-H. Zheng and Q.-G. Zhang, Recovering the initial distribution for space-fractional diffusion equation by a logarithmic regularization method, Appl. Math. Lett., 61 (2016), pp. 143--148, https://doi.org/10.1016/j.aml.2016.06.002.
[47]
G.-H. Zheng and Q.-G. Zhang, Determining the initial distribution in space-fractional diffusion by a negative exponential regularization method, Inverse Probl. Sci. Eng., 25 (2017), pp. 965--977, https://doi.org/10.1080/17415977.2016.1209750.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis  Volume 60, Issue 4
DOI:10.1137/sjnaam.60.4
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2022

Author Tags

  1. stability estimates
  2. nonlinear diffusion equations
  3. coupling operator of local and nonlocal type
  4. filter regularization
  5. globally Lipschitz approximation technique

Author Tags

  1. 65N20
  2. 35R25
  3. 47J06
  4. 26A33

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 30 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media