skip to main content
research-article

Penalization of Dirichlet Boundary Control for Nonstationary Magneto-Hydrodynamics

Published: 01 January 2020 Publication History

Abstract

Penalization of Dirichlet boundary controlled nonstationary magneto-hydrodynamic equations is considered. Asymptotic behavior of solutions of a penalized control problem with respect to the penalty parameter is investigated. It is proved that solutions of the penalized boundary control problem converge to the solutions of the Dirichlet control problem as penalty parameter $\epsilon$ goes to zero. The existence of optimal solutions as well as the characterization of such solutions by first order necessary conditions are established. A second order sufficient optimality condition for the optimal control problem is also developed. Numerical results are provided showing the feasibility and effectiveness of the penalty method.

References

[1]
V. Barbu, T. Havrneanu, C. Popa, and S. S. Sritharan, Exact controllability for the magneto-hydrodynamic equations, Comm. Pure Appl. Math., 56 (2003), pp. 732--783.
[2]
F. Ben Belgacem, C. Bernardi, and H. El Fekih, Dirichlet boundary control for a parabolic equation with final observation: A space-time mixed formulation and penalization, Asymptot. Anal., 71 (2011), pp. 101--121.
[3]
F. Ben Belgacem, H. El Fekih, and J. P. Raymond, A penalized approach for solving a parabolic equation with non-smooth Dirichlet boundary conditions, Asymptot. Anal., 34 (2003), pp. 121--136.
[4]
E. Casas, M. Mateos, and J. P. Raymond, Penalization of Dirichlet optimal control problems, ESAIM Control Optim. Calc. Var., 15 (2009), pp. 782--809.
[5]
G. Duvaut and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. V, Springer-Verlag, New York, 1992.
[6]
H. O. Fattorini and S. S. Sritharan, Existence of optimal controls for viscous flow problems, Proc. A, 439 (1992), pp. 81--102.
[7]
R. Griesse and K. Kunisch, Optimal control for a stationary MHD system in velocity-current formulation, SIAM J. Control Optim., 45 (2006), pp. 1822--1845.
[8]
M. D. Gunzburger, L. S. Hou, and Th. P. Svobodny, Analysis and finite approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet control, ESAIM Math. Model. Numer. Anal., 25 (1990), pp. 711--748.
[9]
M. D. Gunzburger and C. Trenchea, Analysis of an optimal control problem for the three-dimensional coupled modified Navier-Stokes and Maxwell equations, J. Math. Anal. Appl., 333 (2007), pp. 295--310.
[10]
L. Hou and A. Meir, Boundary optimal control of MHD flows, Appl. Math. Optim., 32 (1995), pp. 143--162.
[11]
L. S. Hou and S. S. Ravindran, A penalized Neumann control approach for solving an optimal Dirichlet control problem for the Navier-Stokes equations, SIAM J. Control Optim., 36 (1998), pp. 1795--1814.
[12]
L. S. Hou and S. S. Ravindran, Computation of boundary control for electrically conducting flows, J. Comput. Phys., 128 (1996), pp. 319--330.
[13]
S. S. Ravindran, Real time computational algorithms for optimal control of an MHD flow system, SIAM J. Sci. Comput., 26 (2005), pp. 1369--1388.
[14]
O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, 2nd ed., Gordon and Breach, New York, 1969.
[15]
C. Midya, Control of flow separation in a channel with step using an electromagnetic force, Magneto-hydrodynamics, 43 (2007), pp. 99--110.
[16]
P. Monk, Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003.
[17]
J. Necas, Les Méthods Directes en Théorie des Équations Elliptiques, Masson et Cie, Paris, 1967.
[18]
S. S. Ravindran, Convergence of extrapolated BDF2 finite element schemes for unsteady penetrative convection model, Numer. Funct. Anal. Optim., 33 (2012), pp. 48--79.
[19]
S. S. Ravindran, Finite element approximation of Dirichlet control using boundary penalty method for unsteady Navier-Stokes equations, ESAIM Math. Model. Numer. Anal., 51 (2017), pp. 825--849.
[20]
S. S. Ravindran, Dirichlet control of unsteady Navier-Stokes type system related to Soret convection by boundary penalty method, ESAIM Control Optim. Calc. Var., 40 (2014), pp. 840--863.
[21]
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), pp. 65--96.
[22]
J. S. Walker, Large interaction parameter magneto-hydrodynamics and applications in fusion reactor technology, in Fluid Mechanics in Energy Conversion, J. Buckmaster, ed., SIAM, Philadelphia, 1980.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization  Volume 58, Issue 4
DOI:10.1137/sjcodc.58.4
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2020

Author Tags

  1. Dirichlet boundary control
  2. boundary penalty
  3. magneto-hydrodynamics
  4. asymptotics
  5. existence
  6. first order necessary condition
  7. second order sufficient condition

Author Tags

  1. 35Q30
  2. 35B40
  3. 76B75
  4. 49K20
  5. 93C20
  6. 76W05
  7. 76D55

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media