skip to main content
research-article

Strong Stability of Explicit Runge--Kutta Time Discretizations

Published: 01 January 2019 Publication History

Abstract

Motivated by studies on fully discrete numerical schemes for linear hyperbolic conservation laws, we present a framework on analyzing the strong stability of explicit Runge--Kutta (RK) time discretizations for seminegative autonomous linear systems. The analysis is based on the energy method and can be performed with the aid of a computer. Strong stability of various RK methods, including a sixteen-stage embedded pair of order nine and eight, has been examined under this framework. Based on numerous numerical observations, we further characterize the features of strongly stable schemes. A both necessary and sufficient condition is given for the strong stability of RK methods of odd linear order.

References

[1]
P. Bogacki and L. F. Shampine, An efficient Runge--Kutta (4, 5) pair, Comput. Math. Appl., 32 (1996), pp. 15--28.
[2]
J. C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley & Sons, New York, 2016.
[3]
G. Chavent and B. Cockburn, The local projection $p^0-p^1$-discontinuous-Galerkin finite element method for scalar conservation laws, ESAIM Math. Model. Numer. Anal., 23 (1989), pp. 565--592.
[4]
Y. Cheng, C.-S. Chou, F. Li, and Y. Xing, ${L}^2$ stable discontinuous Galerkin methods for one-dimensional two-way wave equations, Math. Comp., 86 (2017), pp. 121--155.
[5]
E. T. Chung and B. Engquist, Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions, SIAM J. Numer. Anal., 47 (2009), pp. 3820--3848.
[6]
B. Cockburn, S. Hou, and C.-W. Shu, The Runge--Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case, Math. Comp., 54 (1990), pp. 545--581.
[7]
B. Cockburn, S.-Y. Lin, and C.-W. Shu, TVB Runge--Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems, J. Comput. Phys., 84 (1989), pp. 90--113.
[8]
B. Cockburn and C.-W. Shu, TVB Runge--Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework, Math. Comp., 52 (1989), pp. 411--435.
[9]
B. Cockburn and C.-W. Shu, The Runge--Kutta local projection $ {P}^1$-discontinuous-Galerkin finite element method for scalar conservation laws, ESAIM Math. Model. Numer. Anal., 25 (1991), pp. 337--361.
[10]
B. Cockburn and C.-W. Shu, The Runge--Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems, J. Comput. Phys., 141 (1998), pp. 199--224.
[11]
B. Cockburn and C.-W. Shu, Runge--Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16 (2001), pp. 173--261.
[12]
G. Fu and C.-W. Shu, Optimal energy-conserving discontinuous Galerkin methods for linear symmetric hyperbolic systems, preprint, arXiv:1804.10307 [math.NA], 2018.
[13]
G. Fu and C.-W. Shu, An energy-conserving ultra-weak discontinuous Galerkin method for the generalized Korteweg--de Vries equation, J. Comput. Appl. Math., 349 (2019), pp. 41--51.
[14]
S. Gottlieb and C.-W. Shu, Total variation diminishing Runge--Kutta schemes, Math. Comp., 67 (1998), pp. 73--85.
[15]
S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev., 43 (2001), pp. 89--112.
[16]
B. Gustafsson, H.-O. Kreiss, and J. Oliger, Time Dependent Problems and Difference Methods, John Wiley & Sons, New York, 1995.
[17]
J. Huang and C.-W. Shu, Bound-preserving modified exponential Runge--Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms, J. Comput. Phys., 361 (2018), pp. 111--135.
[18]
A. Iserles, A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, Cambridge, UK, 2009.
[19]
L. Isherwood, Z. Grant, and S. Gottlieb, Strong stability preserving integrating factor Runge--Kutta methods, SIAM J. Numer. Anal., 56 (2018), pp. 3276--3307.
[20]
L. Isherwood, Z. Grant, and S. Gottlieb, Downwinding for preserving strong stability in explicit integrating factor Runge--Kutta methods, preprint, arXiv:1810.04800 [math.NA], 2018.
[21]
J. F. B. M. Kraaijevanger, Contractivity of Runge--Kutta methods, BIT, 31 (1991), pp. 482--528.
[22]
R. J. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser, Basel, 1992.
[23]
D. Levy and E. Tadmor, From semidiscrete to fully discrete: Stability of Runge--Kutta schemes by the energy method, SIAM Rev., 40 (1998), pp. 40--73.
[24]
T. Qin and C.-W. Shu, Implicit positivity-preserving high-order discontinuous Galerkin methods for conservation laws, SIAM J. Sci. Comput., 40 (2018), pp. A81--A107.
[25]
T. Qin, C.-W. Shu, and Y. Yang, Bound-preserving discontinuous Galerkin methods for relativistic hydrodynamics, J. Comput. Phys., 315 (2016), pp. 323--347.
[26]
H. Ranocha and P. Öffner, ${L}_2$ stability of explicit Runge--Kutta schemes, J. Sci. Comput., 75 (2018), pp. 1040--1056.
[27]
H. Ranocha, On strong stability of explicit Runge--Kutta methods for nonlinear semibounded operators, preprint, arXiv:1811.11601 [math.NA], 2018.
[28]
L. F. Shampine, Numerical Solution of Ordinary Differential Equations, Routledge, Abingdon-on-Thames, UK, 2018.
[29]
C.-W. Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 1073--1084.
[30]
C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77 (1988), pp. 439--471.
[31]
M. Sofroniou and G. Spaletta, Construction of explicit Runge--Kutta pairs with stiffness detection, Math. Comput. Model., 40 (2004), pp. 1157--1169.
[32]
M. Spijker, Contractivity in the numerical solution of initial value problems, Numer. Math., 42 (1983), pp. 271--290.
[33]
R. J. Spiteri and S. J. Ruuth, A new class of optimal high-order strong-stability-preserving time discretization methods, SIAM J. Numer. Anal., 40 (2002), pp. 469--491.
[34]
Z. Sun, J. A. Carrillo, and C.-W. Shu, A discontinuous Galerkin method for nonlinear parabolic equations and gradient flow problems with interaction potentials, J. Comput. Phys., 352 (2018), pp. 76--104.
[35]
Z. Sun, J. A. Carrillo, and C.-W. Shu, An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems, Kinet. Relat. Models, to appear.
[36]
Z. Sun and C.-W. Shu, Stability analysis and error estimates of Lax--Wendroff discontinuous Galerkin methods for linear conservation laws, ESAIM Math. Model. Numer. Anal., 51 (2017), pp. 1063--1087.
[37]
Z. Sun and C.-W. Shu, Stability of the fourth order Runge--Kutta method for time-dependent partial differential equations, Ann. Math. Sci. Appl., 2 (2017), pp. 255--284.
[38]
E. Tadmor, From semidiscrete to fully discrete: Stability of Runge--Kutta schemes by the energy method. II, Collected Lectures on the Preservation of Stability under Discretization, Lecture Notes from Colorado State University Conference, Fort Collins, CO, 2001 (D. Estep and S. Tavener, eds.), Proceedings in Applied Mathematics, SIAM, Philadelphia, 109 (2002), pp. 25--49.
[39]
J. H. Verner, Numerically optimal Runge--Kutta pairs with interpolants, Numer. Algorithms, 53 (2010), pp. 383--396.
[40]
H. Wang, C.-W. Shu, and Q. Zhang, Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems, SIAM J. Numer. Anal., 53 (2015), pp. 206--227.
[41]
H. Wang, C.-W. Shu, and Q. Zhang, Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems, Appl. Math. Comput., 272 (2016), pp. 237--258.
[42]
S. Wolfram, Wolfram Mathematica tutorial collection: Advanced numerical differential equation solving in Mathematica, Wolfram Research, Champaign, 2008.
[43]
K. Wu and H. Tang, High-order accurate physical-constraints-preserving finite difference WENO schemes for special relativistic hydrodynamics, J. Comput. Phys., 298 (2015), pp. 539--564.
[44]
Y. Xing, X. Zhang, and C.-W. Shu, Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations, Adv. Water Resour., 33 (2010), pp. 1476--1493.
[45]
Q. Zhang and F. Gao, A fully-discrete local discontinuous Galerkin method for convection-dominated Sobolev equation, J. Sci. Comput., 51 (2012), pp. 107--134.
[46]
Q. Zhang and C.-W. Shu, Stability analysis and a priori error estimates of the third order explicit Runge--Kutta discontinuous Galerkin method for scalar conservation laws, SIAM J. Numer. Anal., 48 (2010), pp. 1038--1063.
[47]
X. Zhang and C.-W. Shu, On maximum-principle-satisfying high order schemes for scalar conservation laws, J. Comput. Phys., 229 (2010), pp. 3091--3120.
[48]
X. Zhang and C.-W. Shu, On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, J. Comput. Phys., 229 (2010), pp. 8918--8934.
[49]
X. Zhang and C.-W. Shu, Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: Survey and new developments, Proc. Roy. Soc. London A, 467 (2011), pp. 2752--2776.
[50]
L. Zhou, Y. Xia, and C.-W. Shu, Stability analysis and error estimates of arbitrary Lagrangian--Eulerian discontinuous Galerkin method coupled with Runge--Kutta time-marching for linear conservation laws, ESAIM Math. Model. Numer. Anal., to appear.

Cited By

View all
  • (2024)Stability Analysis and Error Estimate of the Explicit Single-Step Time-Marching Discontinuous Galerkin Methods with Stage-Dependent Numerical Flux Parameters for a Linear Hyperbolic Equation in One DimensionJournal of Scientific Computing10.1007/s10915-024-02621-2100:3Online publication date: 13-Jul-2024
  • (2023)On Generalized Gauss–Radau Projections and Optimal Error Estimates of Upwind-Biased DG Methods for the Linear Advection Equation on Special Simplex MeshesJournal of Scientific Computing10.1007/s10915-023-02166-w95:2Online publication date: 18-Mar-2023

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis  Volume 57, Issue 3
DOI:10.1137/sjnaam.57.3
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2019

Author Tags

  1. Runge--Kutta methods
  2. strong stability
  3. energy method
  4. hyperbolic problems
  5. conditional contractivity

Author Tags

  1. 65M12
  2. 65M20
  3. 65L06

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 07 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Stability Analysis and Error Estimate of the Explicit Single-Step Time-Marching Discontinuous Galerkin Methods with Stage-Dependent Numerical Flux Parameters for a Linear Hyperbolic Equation in One DimensionJournal of Scientific Computing10.1007/s10915-024-02621-2100:3Online publication date: 13-Jul-2024
  • (2023)On Generalized Gauss–Radau Projections and Optimal Error Estimates of Upwind-Biased DG Methods for the Linear Advection Equation on Special Simplex MeshesJournal of Scientific Computing10.1007/s10915-023-02166-w95:2Online publication date: 18-Mar-2023

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media