skip to main content
research-article

Constructing New Time Integrators Using Interpolating Polynomials

Published: 01 October 2019 Publication History

Abstract

We present a methodology for constructing time integrators for solving systems of first-order ordinary differential equations by using interpolating polynomials. Our approach is to combine ideas from complex analysis and approximation theory to construct new integrators. This strategy allows us to trivially satisfy order conditions and easily construct a range of implicit or explicit integrators with properties such as parallelism and high order of accuracy. In this work, we present several example polynomial methods including generalizations of the backward differentiation formula and Adams--Moulton methods. We compare the stability regions of these generalized methods to their classical counterparts and find that the new methods offer improved stability especially at high order.

References

[1]
M. J. Ablowitz and A. S. Fokas, Complex Variables: Introduction and Applications, Cambridge University Press, New York, 2003.
[2]
A. P. Austin, P. Kravanja, and L. N. Trefethen, Numerical algorithms based on analytic function values at roots of unity, SIAM J. Numer. Anal., 52 (2014), pp. 1795--1821.
[3]
F. Bornemann, Accuracy and stability of computing high-order derivatives of analytic functions by Cauchy integrals, Found. Comput. Math., 11 (2011), pp. 1--63.
[4]
F. Bornemann and G. Wechslberger, Optimal contours for high-order derivatives, IMA J. Numer. Anal., 33 (2013), pp. 403--412.
[5]
J. P. Boyd, Chebyshev and Fourier Spectral Methods, Dover, New York, 2013.
[6]
J. C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley & Sons, New York, 2016.
[7]
T. Buvoli, Codebase for “Constructing Time Integrators Using Interpolating Polynomials,” https://doi.org/10.5281/zenodo.3031860 (2019).
[8]
G. F. Corliss, Integrating ODEs in the complex plane---pole vaulting, Math. Comp., 35 (1980), pp. 1181--1189.
[9]
B. Fornberg, Numerical differentiation of analytic functions, ACM Trans. Math. Software, 7 (1981), pp. 512--526.
[10]
B. Fornberg, A Practical Guide to Pseudospectral Methods, Vol. 1, Cambridge University Press, New York, 1998.
[11]
B. Fornberg and J. A. C. Weideman, A numerical methodology for the Painlevé equations, J. Comput. Phys., 230 (2011), pp. 5957--5973.
[12]
M. J. Gander, 50 years of time parallel time integration, in Multiple Shooting and Time Domain Decomposition Methods, Springer, New York, 2015, pp. 69--113.
[13]
C. W. Gear, Parallel methods for ordinary differential equations, Calcolo, 25 (1988), pp. 1--20.
[14]
E. Hansen and A. Ostermann, High order splitting methods for analytic semigroups exist, BIT, 49 (2009), pp. 527--542.
[15]
J. N. Lyness and C. B. Moler, Numerical differentiation of analytic functions, SIAM J. Numer. Anal., 4 (1967), pp. 202--210.
[16]
T. Orendt, J. Richter-Gebert, and M. Schmid, Geometry of Numerical Complex Time Integration, preprint, arXiv:0903.1585, 2009.
[17]
G. Rainwater and M. Tokman, A new approach to constructing efficient stiffly accurate EPIRK methods, J. Comput. Phys., 323 (2016), pp. 283--309.
[18]
J. Strikwerda, Finite Difference Schemes and Partial Differential Equations, 2nd ed., SIAM, Philadelphia, 2004.
[19]
M. Tokman, Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods, J. Comput. Phys., 213 (2006), pp. 748--776.
[20]
L. N. Trefethen, Spectral Methods in MATLAB, Software Environ. Tools 10, SIAM, Philadelphia, 2000.
[21]
L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia, 2013.
[22]
L. N. Trefethen and J. Weideman, The exponentially convergent trapezoidal rule, SIAM Rev., 56 (2014), pp. 385--458.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing  Volume 41, Issue 5
2019
1533 pages
ISSN:1064-8275
DOI:10.1137/sjoce3.41.5
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 October 2019

Author Tags

  1. time integration
  2. polynomial interpolation
  3. approximation theory
  4. parallelism
  5. high-order

Author Tags

  1. 65L04
  2. 65L05
  3. 65L06
  4. 65E99

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Sep 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media