skip to main content
research-article

Invariant Domains and First-Order Continuous Finite Element Approximation for Hyperbolic Systems

Published: 01 January 2016 Publication History

Abstract

We propose a numerical method for solving general hyperbolic systems in any space dimension using forward Euler time stepping and continuous finite elements on nonuniform grids. The properties of the method are based on the introduction of an artificial dissipation that is defined so that any convex invariant set containing the initial data is an invariant domain for the method. The invariant domain property is proved for any hyperbolic system provided a CFL condition holds. The solution is also shown to satisfy a discrete entropy inequality for every admissible entropy of the system. The method is formally first-order accurate in space and can be made high-order in time by using strong stability preserving algorithms. This technique extends to continuous finite elements the work of [D. Hoff, Math. Comp., 33 (1979), pp. 1171--1193], [D. Hoff, Trans. Amer. Math. Soc., 289 (1985), pp. 591--610], and [H. Frid, Arch. Ration. Mech. Anal., 160 (2001), pp. 245--269].

References

[1]
M. Ainsworth, Pyramid algorithms for Bernstein--Bézier finite elements of high, nonuniform order in any dimension, SIAM J. Sci. Comput., 36 (2014), pp. A543--A569, http://dx.doi.org/10.1137/130914048 130914048.
[2]
S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems, Ann. of Math. (2), 161 (2005), pp. 223--342.
[3]
A. Bressan, Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem, Oxford Lecture Ser. Math. Appl. 20, Oxford University Press, Oxford, UK, 2000.
[4]
A. J. Chorin, Random choice solution of hyperbolic systems, J. Comput. Phys., 22 (1976), pp. 517--533.
[5]
K. N. Chueh, C. C. Conley, and J. A. Smoller, Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J., 26 (1977), pp. 373--392.
[6]
P. Colella, Multidimensional upwind methods for hyperbolic conservation laws, J. Comput. Phys., 87 (1990), pp. 171--200, http://dx.doi.org/10.1016/0021-9991(90)90233-Q
[7]
M. G. Crandall and A. Majda, Monotone difference approximations for scalar conservation laws, Math. Comp., 34 (1980), pp. 1--21, http://dx.doi.org/10.2307/2006218
[8]
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Grundlehren Math. Wiss. [Fundamental Principles of Mathematical Sciences] 325, Springer-Verlag, Berlin, 2000, http://dx.doi.org/10.1007/3-540-29089-3_14 .
[9]
H. Frid, Maps of convex sets and invariant regions for finite-difference systems of conservation laws, Arch. Ration. Mech. Anal., 160 (2001), pp. 245--269, http://dx.doi.org/10.1007/s002050100166
[10]
J.-L. Guermond and M. Nazarov, A maximum-principle preserving ${C}^0$ finite element method for scalar conservation equations, Comput. Methods Appl. Mech. Engrg., 272 (2013), pp. 198--213.
[11]
J.-L. Guermond and B. Popov, Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations, J. Comput. Phys., 321 (2016), pp. 908--926.
[12]
J.-L. Guermond and B. Popov, Error estimates of a first-order Lagrange finite element technique for nonlinear scalar conservation equations, SIAM J. Numer. Anal., 54 (2016), pp. 57--85, http://dx.doi.org/10.1137/140990863
[13]
D. Hoff, A finite difference scheme for a system of two conservation laws with artificial viscosity, Math. Comp., 33 (1979), pp. 1171--1193.
[14]
D. Hoff, Invariant regions for systems of conservation laws, Trans. Amer. Math. Soc., 289 (1985), pp. 591--610, http://dx.doi.org/10.2307/2000254
[15]
A. Jameson, Positive schemes and shock modelling for compressible flows, Internat. J. Numer. Methods Fluids, 20 (1995), pp. 743--776, http://dx.doi.org/10.1002/fld.1650200805
[16]
A. Kurganov and E. Tadmor, Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers, Numer. Methods Partial Differential Equations, 18 (2002), pp. 584--608, http://dx.doi.org/10.1002/num.10025
[17]
A. Kurganov, G. Petrova, and B. Popov, Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws, SIAM J. Sci. Comput., 29 (2007), pp. 2381--2401, http://dx.doi.org/10.1137/040614189
[18]
D. Kuzmin and S. Turek, Flux correction tools for finite elements, J. Comput. Phys., 175 (2002), pp. 525--558.
[19]
D. Kuzmin, R. Löhner, and S. Turek, eds., Flux-Corrected Transport. Principles, Algorithms, and Applications, Sci. Comput., Springer, Berlin, 2005.
[20]
M.-J. Lai and L. L. Schumaker, Spline Functions on Triangulations, Encyclopedia Math. Appl. 110, Cambridge University Press, Cambridge, UK, 2007, http://dx.doi.org/10.1017/CBO9780511721588 CBO9780511721588.
[21]
P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math., 10 (1957), pp. 537--566.
[22]
P.-L. Lions, B. Perthame, and P. E. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math., 49 (1996), pp. 599--638.
[23]
R. Liska and B. Wendroff, Comparison of several difference schemes on 1D and 2D test problems for the Euler equations, SIAM J. Sci. Comput., 25 (2003), pp. 995--1017, http://dx.doi.org/10.1137/S1064827502402120 S1064827502402120.
[24]
T. P. Liu, The Riemann problem for general systems of conservation laws, J. Differential Equations, 18 (1975), pp. 218--234.
[25]
T. Nishida, Global solution for an initial boundary value problem of a quasilinear hyperbolic system, Proc. Japan Acad., 44 (1968), pp. 642--646.
[26]
S. Osher, The Riemann problem for nonconvex scalar conservation laws and Hamilton-Jacobi equations, Proc. Amer. Math. Soc., 89 (1983), pp. 641--646, http://dx.doi.org/10.2307/2044598
[27]
B. Perthame and C.-W. Shu, On positivity preserving finite volume schemes for Euler equations, Numer. Math., 73 (1996), pp. 119--130, http://dx.doi.org/10.1007/s002110050187
[28]
J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren Math. Wiss. [Fundamental Principles of Mathematical Science] 258, Springer-Verlag, New York, Berlin, 1983.
[29]
E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, 3rd ed., Springer-Verlag, Berlin, 2009.
[30]
R. Young, The $p$-system. I. The Riemann problem, in The Legacy of the Inverse Scattering Transform in Applied Mathematics (South Hadley, MA, 2001), Contemp. Math. 301, Amer. Math. Soc., Providence, RI, 2002, pp. 219--234, http://dx.doi.org/10.1090/conm/301/05166

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis  Volume 54, Issue 4
DOI:10.1137/sjnaam.54.4
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2016

Author Tags

  1. conservation equations
  2. hyperbolic systems
  3. parabolic regularization
  4. invariant domain
  5. first-order method
  6. finite element method

Author Tags

  1. 65M60
  2. 65M12
  3. 35L45
  4. 35L65

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media