skip to main content
research-article

A New Perturbation Bound for the LDU Factorization of Diagonally Dominant Matrices

Published: 01 January 2014 Publication History

Abstract

This work introduces a new perturbation bound for the $L$ factor of the LDU factorization of (row) diagonally dominant matrices computed via the column diagonal dominance pivoting strategy. This strategy yields $L$ and $U$ factors which are always well-conditioned and, so, the LDU factorization is guaranteed to be a rank-revealing decomposition. The new bound together with those for the $D$ and $U$ factors in [F. M. Dopico and P. Koev, Numer. Math., 119 (2011), pp. 337--371] establish that if diagonally dominant matrices are parameterized via their diagonally dominant parts and off-diagonal entries, then tiny relative componentwise perturbations of these parameters produce tiny relative normwise variations of $L$ and $U$ and tiny relative entrywise variations of $D$ when column diagonal dominance pivoting is used. These results will allow us to prove in a follow-up work that such perturbations also lead to strong perturbation bounds for many other problems involving diagonally dominant matrices.

References

[1]
A. S. Alfa, J. Xue, and Q. Ye, Entrywise perturbation theory for diagonally dominant M-matrices with applications, Numer. Math., 90 (2002), pp. 401--414.
[2]
A. Barrlund, Perturbation bounds for the $LDL^H$ and $LU$ decompositions, BIT, 31 (1991), pp. 358--363.
[3]
S. Bora, Structured eigenvalue condition number and backward error of a class of polynomial eigenvalue problems, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 900--917.
[4]
S. Bora and V. Mehrmann, Linear perturbation theory for structured matrix pencils arising in control theory, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 148--169.
[5]
N. Castro-González, J. Ceballos, F. M. Dopico, and J. M. Molera, Accurate solution of structured least squares problems via rank-revealing decompositions, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1112--1128.
[6]
X.-W. Chang, Some features of Gaussian elimination with rook pivoting, BIT, 42 (2002), pp. 66--83.
[7]
X.-W. Chang and R.-C. Li, Multiplicative perturbation analysis for QR factorizations, Numer. Algebra Control Optim., 1 (2011), pp. 301--316.
[8]
X.-W. Chang and C. C. Paige, On the sensitivity of the LU factorization, BIT, 38 (1998), pp. 486--501.
[9]
X.-W. Chang and D. Stehlé, Rigorous perturbation bounds of some matrix factorizations, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2841--2859.
[10]
M. Dailey, F. M. Dopico, and Q. Ye, Relative perturbation theory for diagonally dominant matrices, submitted.
[11]
J. Demmel, M. Gu, S. Eisenstat, I. Slapničar, K. Veselić, and Z. Drmač, Computing the singular value decomposition with high relative accuracy, Linear Algebra Appl., 299 (1999), pp. 21--80.
[12]
J. Demmel and K. Veselić, Jacobi's method is more accurate than $QR$, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 1204--1245.
[13]
F. M. Dopico and P. Koev, Accurate symmetric rank revealing and eigendecompositions of symmetric structured matrices, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 1126--1156.
[14]
F. M. Dopico and P. Koev, Perturbation theory for the LDU factorization and accurate computations for diagonally dominant matrices, Numer. Math., 119 (2011), pp. 337--371.
[15]
F. M. Dopico, P. Koev, and J. M. Molera, Implicit standard Jacobi gives high relative accuracy, Numer. Math., 113 (2009), pp. 519--553.
[16]
F. M. Dopico and J. M. Molera, Perturbation theory for factorizations of LU type through series expansions, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 561--581.
[17]
F. M. Dopico and J. M. Molera, Accurate solution of structured linear systems via rank-revealing decompositions, IMA J. Numer. Anal., 32 (2012), pp. 1096--1116.
[18]
Z. Drmač and K. Veselić, New fast and accurate Jacobi SVD algorithm. I, SIAM J. Matrix Anal. Appl., 29 (2008), pp. 1322--1342.
[19]
F. R. Gantmacher, The Theory of Matrices, Chelsea, New York, 1959.
[20]
G. Golub and C. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, MD, 1996.
[21]
D. J. Higham and N. J. Higham, Backward error and condition of structured linear systems, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 162--175.
[22]
D. J. Higham and N. J. Higham, Structured backward error and condition of generalized eigenvalue problems, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 493--512.
[23]
N. J. Higham, A survey of componentwise perturbation theory in numerical linear algebra, in Mathematics of Computation 1943--1993: A Half Century of Computational Mathematics, AMS, Providence, RI, 1994, pp. 49--77.
[24]
N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia, 2002.
[25]
R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1994.
[26]
I. C. F. Ipsen, Relative perturbation results for matrix eigenvalues and singular values, in Acta Numerica, Vol. 7, Cambridge University Press, Cambridge, 1998, pp. 151--201.
[27]
M. Karow, D. Kressner, and F. Tisseur, Structured eigenvalue condition numbers, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 1052--1068.
[28]
R.-C. Li, Relative perturbation theory: I. Eigenvalue and singular value variations, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 956--982.
[29]
R.-C. Li, A bound on the solution to a structured Sylvester equation with an application to relative perturbation theory, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 440--445.
[30]
R.-C. Li, Y. Nakatsukasa, N. Truhar, and W.-G. Wang, Perturbation of multiple eigenvalues of Hermitian matrices, Linear Algebra Appl., 437 (2012), pp. 202--213.
[31]
R.-C. Li, Y. Nakatsukasa, N. Truhar, and S. Xu, Perturbation of partitioned Hermitian definite generalized eigenvalue problems, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 642--663.
[32]
J. M. Pen͂a, LDU decompositions with L and U well conditioned, Electron. Trans. Numer. Anal., 18 (2004), pp. 198--208.
[33]
S. M. Rump, Eigenvalues, pseudospectrum and structured perturbations, Linear Algebra Appl., 413 (2006), pp. 567--593.
[34]
I. Slapničar, Componentwise analysis of direct factorization of real symmetric and Hermitian matrices, Linear Algebra Appl., 272 (1998), pp. 227--275.
[35]
G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, New York, 1990.
[36]
J. Sun, Componentwise perturbation bounds for some matrix decompositions, BIT, 32 (1992), pp. 702--714.
[37]
F. Tisseur and N. J. Higham, Structured pseudospectra for polynomial eigenvalue problems, with applications, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 187--208.
[38]
K. Veselić and I. Slapničar, Floating point perturbations of Hermitian matrices, Linear Algebra Appl., 195 (1993), pp. 81--116.
[39]
Q. Ye, Computing singular values of diagonally dominant matrices to high relative accuracy, Math. Comp., 77 (2008), pp. 2195--2230.
[40]
Q. Ye, Relative perturbation bounds for eigenvalues of symmetric positive definite diagonally dominant matrices, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 11--17.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications  Volume 35, Issue 3
2014
427 pages
ISSN:0895-4798
DOI:10.1137/sjmael.35.3
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2014

Author Tags

  1. accurate computations
  2. column diagonal dominance pivoting
  3. diagonally dominant matrices
  4. diagonally dominant parts
  5. LDU factorization
  6. rank-revealing decomposition
  7. relative perturbation theory

Author Tags

  1. 65F05
  2. 65F15
  3. 15A18
  4. 15A23
  5. 15B99

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 28 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media