skip to main content
article

Small-Size $\eps$-Nets for Axis-Parallel Rectangles and Boxes

Published: 01 July 2010 Publication History

Abstract

We show the existence of $\varepsilon$-nets of size $O\left(\frac{1}{\varepsilon}\log\log\frac{1}{\varepsilon}\right)$ for planar point sets and axis-parallel rectangular ranges. The same bound holds for points in the plane and “fat” triangular ranges and for point sets in $\boldsymbol{R}^3$ and axis-parallel boxes; these are the first known nontrivial bounds for these range spaces. Our technique also yields improved bounds on the size of $\varepsilon$-nets in the more general context considered by Clarkson and Varadarajan. For example, we show the existence of $\varepsilon$-nets of size $O\left(\frac{1}{\varepsilon}\log\log\log\frac{1}{\varepsilon}\right)$ for the dual range space of “fat” regions and planar point sets (where the regions are the ground objects and the ranges are subsets stabbed by points). Plugging our bounds into the technique of Brönnimann and Goodrich or of Even, Rawitz, and Shahar, we obtain improved approximation factors (computable in expected polynomial time by a randomized algorithm) for the hitting set or the set cover problems associated with the corresponding range spaces.

References

[1]
P. K. Agarwal, J. Matoušek, and O. Schwarzkopf, Computing many faces in arrangements of lines and segments, SIAM J. Comput., 27 (1998), pp. 491-505.
[2]
P. Agarwal, M. Sharir, and P. Shor, Sharp upper and lower bounds for the length of general Davenport Schinzel sequences, J. Combin. Theory Ser. A, 52 (1989), pp. 228-274.
[3]
N. Alon and J. Spencer, The Probabilistic Method, Wiley Interscience, New York, 1992.
[4]
M. Bellare, S. Goldwasser, G. Lund, and A. Russell, Efficient probabilistically checkable proofs and applications to approximation, in Proceedings of the 25th Annual ACM Symposium on Theory of Computing, ACM, New York, 1993, pp. 294-304.
[5]
A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth, Classifying learnable geometric concepts with the Vapnik-Chervonenkis dimension, J. ACM, 36 (1989), pp. 929-965.
[6]
J. D. Boissonnat, M. Sharir, B. Tagansky, and M. Yvinec, Voronoi diagrams in higher dimensions under certain polyhedral distance functions, Discrete Comput. Geom., 19 (1998), pp. 485-519.
[7]
H. Brönnimann and M. T. Goodrich, Almost optimal set covers in finite VC dimensions, Discrete Comput. Geom., 14 (1995), pp. 463-479.
[8]
H. Brönnimann and J. Lenchner, Fast almost-linear-sized nets for boxes in the plane, in Proceedings of the 14th Annual Fall Workshop on Computational Geometrics, Boston, MA, 2004, pp. 36-38.
[9]
B. Chazelle and J. Friedman, A deterministic view of random sampling and its use in geometry, Combinatorica, 10 (1990), pp. 229-249.
[10]
C. Chekuri, K. Clarkson, and S. Har-Peled, On the set multi-cover problem in geometric settings, in Proceedings of the 25th Annual ACM Symposium on Computational Geometry, ACM, New York, 2009, pp. 341-350.
[11]
K. L. Clarkson, New applications of random sampling in computational geometry, Discrete Comput. Geom., 2 (1987), pp. 195-222.
[12]
K. L. Clarkson, Algorithms for polytope covering and approximation, in Proceedings of the 3rd Workshop on Algorithms and Data Structures, Montreal, Canada, 1993, pp. 246-252.
[13]
K. L. Clarkson and P. W. Shor, Applications of random sampling in computational geometry, II, Discrete Comput. Geom., 4 (1989), pp. 387-421.
[14]
K. L. Clarkson and K. Varadarajan, Improved approximation algorithms for geometric set cover, Discrete Comput. Geom., 37 (2007), pp. 43-58.
[15]
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2001.
[16]
M. de Berg, Improved bounds on the union complexity of fat objects, Discrete Comput. Geom., 40 (2008), pp. 127-140.
[17]
M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geometry: Algorithms and Applications, 3rd rev. ed., Springer-Verlag, Berlin, 2008.
[18]
M. de Berg, Better bounds on the union complexity of locally fat objects, in Proceedings of the 26th Annual Symposium on Computational Geometry, Snowbird, UT, 2010, pp. 39-47.
[19]
H. Edelsbrunner, L. Guibas, J. Hershberger, J. Pach, R. Pollack, R. Seidel, M. Sharir, and J. Snoeyink, On arrangements of Jordan arcs with three intersections per pair, Discrete Comput. Geom., 4 (1989), pp. 523-539.
[20]
A. Efrat, The complexity of the union of $(\alpha,\beta)$-covered objects, SIAM J. Comput., 34 (2005), pp. 775-787.
[21]
A. Efrat and M. Katz, On the union of $\kappa$-curved objects, Comput. Geom. Theory Appl., 14 (1999), pp. 241-254.
[22]
A. Efrat and M. Sharir, The complexity of the union of fat objects in the plane, Discrete Comput. Geom., 23 (2000), pp. 171-189.
[23]
G. Even, D. Rawitz, and S. Shahar, Hitting sets when the VC-dimension is small, Inform. Process. Lett., 95 (2005), pp. 358-362.
[24]
E. Ezra, Weak $\eps$-Nets for Axis-Parallel Boxes in $d$-Space, manuscript, 2009.
[25]
T. Feder and D. H. Greene, Optimal algorithms for approximate clustering, in Proceedings of the 20th Annual ACM Symposium on Theory of Computing, ACM, New York, 1988, pp. 434-444.
[26]
U. Feige, A threshold of $\ln{n}$ for approximating set cover, J. ACM, 45 (1998), pp. 634-652.
[27]
R. Fowler, M. Paterson, and S. Tanimoto, Optimal packing and covering in the plane are NP-complete, Inform. Process. Lett., 12 (1981), pp. 133-137.
[28]
M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, New York, 1979.
[29]
S. Har-Peled, H. Kaplan, M. Sharir, and S. Smorodinsky, $\eps$-nets for Halfspaces Revisited, manuscript.
[30]
D. Haussler and E. Welzl, $\varepsilon$-nets and simplex range queries, Discrete Comput. Geom., 2 (1987), pp. 127-151.
[31]
H. Kaplan, N. Rubin, M. Sharir, and E. Verbin, Efficient colored orthogonal range counting, SIAM J. Comput., 38 (2008), pp. 982-1011.
[32]
R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-103.
[33]
J. King and D. Kirkpatrick, Improved approximation for guarding simple galleries from the perimeter, available online at http://arxiv.org/abs/1001.4231, 2010.
[34]
J. Komlós, J. Pach, and G. Woeginger, Almost tight bounds for $\epsilon$ nets, Discrete Comput. Geom., 7 (1992), pp. 163-173.
[35]
J. Matoušek, Lectures on Discrete Geometry, Springer-Verlag, New York, 2002.
[36]
J. Matoušek, Efficient partition trees, Discrete Comput. Geom., 8 (1992), pp. 315-334.
[37]
J. Matoušek, Reporting points in halfspaces, Comput. Geom. Theory Appl., 2 (1992), pp. 169-186.
[38]
J. Matoušek, Approximations and optimal geometric divide-and-conquer, J. Comput System Sci., 50 (1995), pp. 203-208.
[39]
J. Matoušek, R. Seidel, and E. Welzl, How to net a lot with little: Small $\eps$-nets for disks and halfspaces, in Proceedings of the 6th Annual ACM Symposium on Computational Geometry, ACM, New York, 1990, pp. 16-22. Revised version available at http://kam.mff.cuni.cz/$\sim$matousek/enets3.ps.gz.
[40]
J. Matoušek, J. Pach, M. Sharir, S. Sifrony, and E. Welzl, Fat triangles determine linearly many holes, SIAM J. Comput., 23 (1994), pp. 154-169.
[41]
A. Naamad, D. T. Lee, and W. L. Hsu, On the maximal empty rectangle problem, Discrete Appl. Math., 8 (1984), pp. 267-277.
[42]
G. Nivasch, Improved bounds and new techniques for Davenport-Schinzel sequences and their generalizations, J. ACM, 57 (2010), pp. 1-44.
[43]
J. Pach and P. K. Agarwal, Combinatorial Geometry, Wiley Interscience, New York, 1995.
[44]
J. Pach and G. Tardos, On the boundary complexity of the union of fat triangles, SIAM J. Comput., 31 (2002), pp. 1745-1760.
[45]
S. A. Plotkin, D. B. Shmoys, and É. Tardos, Fast approximation algorithms for fractional packing and covering problems, Math. Oper. Res., 20 (1995), pp. 257-301.
[46]
E. Pyrga and S. Ray, New existence proofs for $\eps$-nets, in Proceedings of the 24th Annual ACM Symposium on Computational Geometry, ACM, New York, 2008, pp. 199-207.
[47]
M. Sharir and P. K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Applications, Cambridge University Press, New York, 1995.
[48]
K. Varadarajan, Epsilon nets and union complexity, in Proceedings of the 25th Annual ACM Symposium on Computational Geometry, ACM, New York, 2009, pp. 11-16.
[49]
N. E. Young, Randomized rounding without solving the linear program, in Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, SIAM, Philadelphia, 1995, pp. 170-178.

Cited By

View all
  1. Small-Size $\eps$-Nets for Axis-Parallel Rectangles and Boxes

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image SIAM Journal on Computing
      SIAM Journal on Computing  Volume 39, Issue 7
      May 2010
      757 pages

      Publisher

      Society for Industrial and Applied Mathematics

      United States

      Publication History

      Published: 01 July 2010

      Author Tags

      1. $\varepsilon$-nets
      2. Exponential Decay Lemma
      3. geometric range spaces
      4. hitting set
      5. set cover

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 13 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media