skip to main content
research-article

On the Evaluation of Powers and Monomials

Published: 01 May 1980 Publication History

Abstract

Let $y_1, \cdots,y_p $ be monomials over the indeterminates $x_1, \cdots,x_q $. For every $y = (y_1, \cdots,y_p )$ there is some minimum number $L(y)$ of multiplications sufficient to compute $y_1, \cdots,y_p $ from $x_1, \cdots,x_q $ and the identity 1. Let $L(p,q,N)$ denote the maximum of $L(y)$ over all y for which the exponent of any indeterminate in any monomial is at most N. We show that if $p = (N + 1^{o(q)} )$ and $q = (N + 1^{o(p)} )$, then $L(p,q,N) = \min \{ p,q\} \log N + H/\log H + o(H /\log H)$, where $H = pq\log (N + 1)$ and all logarithms have base 2.

References

[1]
R. E. Bellman, Addition chains of vectors, Amer. Math. Monthly, 70 (1963), 765–
[2]
Alfred Brauer, On addition chains, Bull. Amer. Math. Soc., 45 (1939), 736–739
[3]
P. Erdös, Remarks on number theory. III. On addition chains, Acta Arith., 6 (1960), 77–81
[4]
Donald E. Knuth, The art of computer programming. Vol. 2: Seminumerical algorithms, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont, 1969xi+624
[5]
Nicholas Pippenger, On the evaluation of powers and related problems (preliminary version), 17th Annual Symposium on Foundations of Computer Science (Houston, Tex., 1976), IEEE Comput. Soc., Long Beach, Calif., 1976, 258–263, 25-27 Oct.
[6]
Nicholas Pippenger, The minimum number of edges in graphs with prescribed paths, Math. Systems Theory, 12 (1979), 325–346
[7]
A. Scholz, Jahresbericht der Deutschen Mathematiker-Vereinigung (II), 47 (1937), 41–42
[8]
E. G. Straus, Addition chains of vectors, Amer. Math. Monthly, 71 (1964), 806–808
[9]
A. C.-C. Yao, On the evaluation of powers, SIAM J. Comput., 5 (1976), 100–103

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Computing
SIAM Journal on Computing  Volume 9, Issue 2
May 1980
221 pages
ISSN:0097-5397
DOI:10.1137/smjcat.1980.9.issue-2
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 May 1980

Author Tags

  1. addition chain
  2. computational complexity
  3. monomial
  4. power

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 29 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media