skip to main content
research-article

On the Value of Oversampling for Deep Learning in Software Defect Prediction

Published: 01 August 2022 Publication History

Abstract

One truism of deep learning is that the automatic feature engineering (seen in the first layers of those networks) excuses data scientists from performing tedious manual feature engineering prior to running DL. For the specific case of deep learning for defect prediction, we show that that truism is false. Specifically, when we pre-process data with a novel oversampling technique called fuzzy sampling, as part of a larger pipeline called GHOST (Goal-oriented Hyper-parameter Optimization for Scalable Training), then we can do significantly better than the prior DL state of the art in 14/20 defect data sets. Our approach yields state-of-the-art results significantly faster deep learners. These results present a cogent case for the use of oversampling prior to applying deep learning on software defect prediction datasets.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image IEEE Transactions on Software Engineering
IEEE Transactions on Software Engineering  Volume 48, Issue 8
Aug. 2022
511 pages

Publisher

IEEE Press

Publication History

Published: 01 August 2022

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 31 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media