skip to main content
research-article

Learning-Based Proxy Collision Detection for Robot Motion Planning Applications

Published: 01 August 2020 Publication History

Abstract

This article demonstrates that collision detection-intensive applications such as robotic motion planning may be accelerated by performing collision checks with a machine learning model. We propose Fastron, a learning-based algorithm, to model a robot&#x0027;s configuration space to be used as a proxy collision detector in place of standard geometric collision checkers. We demonstrate that leveraging the proxy collision detector results in up to an <italic>order of magnitude</italic> faster performance in robot simulation and planning than state-of-the-art collision detection libraries. Our results show that Fastron learns a model more than 100 times faster than a competing C-space modeling approach, while also providing theoretical guarantees of learning convergence. Using the open motion planning libraries (OMPLs), we were able to generate initial motion plans across all experiments with varying robot and environment complexities and workspace obstacle locations. With Fastron, we can repeatedly generate new motion plans at a 56&#x00A0;Hz rate, showing its application toward autonomous surgical assistance task in shared environments with human-controlled manipulators. All performance gains were achieved despite using only CPU-based calculations, suggesting further computational gains with a GPU approach that can parallelize tensor algebra. Code is available online.<xref ref-type="fn" rid="fn1"><sup>1</sup></xref>

References

[1]
H. Choset et al., Principles of Robot Motion: Theory, Algorithms, and Implementation. Cambridge, MA, USA: MIT Press, 2005.
[2]
T. Lozano-Perez, “Spatial planning: A configuration space approach,” IEEE Trans. Comput., vol. 32, no. 2, pp. 108–120, Feb. 1983.
[3]
B. Burns and O. Brock, “Toward optimal configuration space sampling,” in Robotics: Science and Systems, Cambridge, MA, USA: MIT Press, 2005.
[4]
J. Pan and D. Manocha, “Efficient configuration space construction and optimization for motion planning,” Eng., vol. 1, no. 1, pp. 046–057, 2015.
[5]
M. Elbanhawi and M. Simic, “Sampling-based robot motion planning: A review,” IEEE Access, vol. 2, pp. 56–77, 2014.
[6]
M. Duguleana, F. Grigore, A. Teirelbar, and G. Mogan, “Obstacle avoidance of redundant manipulators using neural networks based reinforcement learning,” Robot. Comput. Integr. Manuf., vol. 28, no. 2, pp. 132–146, 2012.
[7]
J. Kuffner, K. Nishiwaki, S. Kagami, Y. Kuniyoshi, M. Inaba, and H. Inoue, “Self-collision detection and prevention for humanoid robots,” in Proc. IEEE Int. Conf. Robot. Autom., May 2002, pp. 2265–2270.
[8]
E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP : A Versatile and Scalable Robot Simulation Framework,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2013, pp. 1321–1326.
[9]
N. Das, N. Gupta, and M. Yip, “Fastron: An online learning-based model and active learning strategy for proxy collision detection,” Proc. 1st Annu. Conf. Robot Learn., 2017, vol. 78, pp. 496–504. [Online]. Available: http://proceedings.mlr.press/v78/das17a.html
[10]
Y. Freund and R. E. Schapire, “Large margin classification using the perceptron algorithm,” Mach. Learn., vol. 37, no. 3, pp. 277–296, 1999.
[11]
J. Huh and D. D. Lee, “Learning high-dimensional mixture models for fast collision detection in rapidly-exploring random trees,” in Proc. IEEE Int. Conf. Robot. Autom., Jun. 2016, pp. 63–69.
[12]
S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” Animal Genetics, vol. 39, no. 5, pp. 561–563, 2008.
[13]
J. Pan and D. Manocha, “Fast probabilistic collision checking for sampling-based motion planning using locality-sensitive hashing,” Int. J. Robot. Res., vol. 35, no. 12, pp. 1477–1496, 2016.
[14]
I. Garcia, J. Martin-Guerrero, E. Soria-Olivas, R. Martinez, S. Rueda, and R. Magdalena, “A neural network approach for real-time collision detection,” in Proc. IEEE Int. Conf. Syst., Man Cybern., 2002, vol. 5, no. 1, pp. 1–5.
[15]
A. H. Qureshi, A. Simeonov, M. J. Bency, and M. C. Yip, “Motion Planning Networks,” in Proc. Int. Conf. Robot. Automat., Montreal, QC, Canada, 2019, pp. 2118–2124.
[16]
C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, 1995.
[17]
C. P. Diehl and G. Cauwenberghs, “SVM Incremental Learning, Adaptation and Optimization,” in Proc. Int. Joint Conf. Neural Netw., 2003, pp. 2685–2690.
[18]
A. J. Smola, B. Scholkopf, and K. R. Muller, “The connection between regularization operators and support vector kernels,” Neural Netw., vol. 11, no. 4, pp. 637–649, 1998.
[19]
C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. Cambridge, MA, USA: The MIT Press, 2006.
[20]
T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine learning,” Ann. Statist., vol. 36, no. 3, pp. 1171–1220, 2008.
[21]
H. Q. Minh, P. Niyogi, and Y. Yao, “Mercer's theorem, feature maps, and smoothing,” in Proc. Int. Conf. Comput. Learn. Theory, 2006, pp. 154–168.
[22]
S. J. Wright, “Coordinate descent algorithms,” Math. Program., vol. 151, no. 1, pp. 3–34, 2015.
[23]
E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure for computing the distance between complex objects in three-dimensional space,” IEEE J. Robot. Autom., vol. 4, no. 2, pp. 193–203, Apr. 1988.
[24]
G. Schohn and D. Cohn, “Less is more: Active learning with support vector machines,” in Proc. 17th Int. Conf. Mach. Learn., 2000, pp. 839–846.
[25]
K. Huang, D. Zheng, J. Sun, Y. Hotta, K. Fujimoto, and S. Naoi, “Sparse learning for support vector classification,” Pattern Recognit. Lett., vol. 31, no. 13, pp. 1944–1951, 2010.
[26]
J. Pan, X. Zhang, and D. Manocha, “Efficient penetration depth approximation using active learning,” ACM Trans. Graph., vol. 32, no. 6, 2013, Art. no.
[27]
P. I. Corke, Robotics, Vision & Control. Berlin, Germany: Springer, 2017.
[28]
J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library for collision and proximity queries,” in Proc. IEEE Int. Conf. Robot. Autom., 2012, pp. 3859–3866.
[29]
S. Chitta, I. Sucan, and S. Cousins, “MoveIt!” IEEE Robot. Autom. Mag., 19, no. 1, pp. 18–19, Mar. 2012.
[30]
D. Hershberger, D. Gossow, and J. Faust, “3D visualization tool for ROS,” 2018. [Online]. Available: http://wiki.ros.org/rviz
[31]
M. Quigley et al., “ROS: An open-source Robot Operating System,” in Proc. ICRA Workshop Open Source Softw., 2009, pp. 1–6.
[32]
I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning library,” IEEE Robot. Autom. Mag., vol. 19, no. 4, pp. 72–82, Dec. 2012.
[33]
J. J. Kuffner and S. M. Lavalle, “RRT-Connect: An efficient approach to single-query path planning,” in Proc. Int. Conf. Robot. Autom., Apr. 2000, pp. 995–1001.
[34]
S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 1–76, 2011.
[35]
J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed trees (BIT*): Sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs,” in Proc. IEEE Int. Conf. Robot. Autom., 2015, pp. 3067–3074.
[36]
B. Yuh, “The bedside assistant in robotic surgery-keys to success,” Urologic Nursing, vol. 33, no. 1, pp. 29–32, 2013.
[37]
R. M. Kuntz, S. Ahyai, K. Lehrich, and A. M. R. Fayad, “Transurethral holmium laser enucleation of the prostate versus transurethral electrocautery resection of the prostate: A randomized prospective trial in 200 patients,” J. Urology, vol. 172, pp. 1012–1016, Sep. 2004.
[38]
O. Mohareri and S. E. Salcudean, “Da vinci auxiliary arm as a robotic surgical assistant for semiautonomous ultrasound guidance during robot-assisted laparoscopic surgery,” in Proc. Hamlyn Symp. Med. Robot., Jul. 2014, pp. 45–46.
[39]
Z. Chen, A. Deguet, R. Taylor, S. Dimaio, G. Fischer, and P. Kazanzides, “An open-source hardware and software platform for telesurgical robotics research,” in Proc. Workshop Syst. Arch. Comput. Assist. Interventions, 2013, pp. 1–10.

Cited By

View all

Index Terms

  1. Learning-Based Proxy Collision Detection for Robot Motion Planning Applications
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image IEEE Transactions on Robotics
          IEEE Transactions on Robotics  Volume 36, Issue 4
          Aug. 2020
          349 pages

          Publisher

          IEEE Press

          Publication History

          Published: 01 August 2020

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 20 Jan 2025

          Other Metrics

          Citations

          Cited By

          View all

          View Options

          View options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media