skip to main content
research-article

Optimizing Cloud-Service Performance: Efficient Resource Provisioning via Optimal Workload Allocation

Published: 01 June 2017 Publication History

Abstract

Cloud computing is being widely accepted and utilized in the business world. From the perspective of businesses utilizing the cloud, it is critical to meet their customers’ requirements by achieving service-level-objectives. Hence, the ability to accurately characterize and optimize cloud-service performance is of great importance. In this paper a stochastic multi-tenant framework is proposed to model the service of customer requests in a cloud infrastructure composed of heterogeneous virtual machines. Two cloud-service performance metrics are mathematically characterized, namely the percentile and the mean of the stochastic response time of a customer request, in closed form. Based upon the proposed multi-tenant framework, a workload allocation algorithm, termed max-min-cloud algorithm, is then devised to optimize the performance of the cloud service. A rigorous optimality proof of the max-min-cloud algorithm is also given. Furthermore, the resource-provisioning problem in the cloud is also studied in light of the max-min-cloud algorithm. In particular, an efficient resource-provisioning strategy is proposed for serving dynamically arriving customer requests. These findings can be used by businesses to build a better understanding of how much virtual resource in the cloud they may need to meet customers’ expectations subject to cost constraints.

Cited By

View all
  1. Optimizing Cloud-Service Performance: Efficient Resource Provisioning via Optimal Workload Allocation

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image IEEE Transactions on Parallel and Distributed Systems
      IEEE Transactions on Parallel and Distributed Systems  Volume 28, Issue 6
      June 2017
      276 pages

      Publisher

      IEEE Press

      Publication History

      Published: 01 June 2017

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 24 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media