skip to main content
research-article

Representing Interpersonal Touch Directions by Tactile Apparent Motion Using Smart Bracelets

Published: 01 July 2019 Publication History

Abstract

We present a novel haptic interaction to vibro-tactually connect an interpersonal touch using bracelet devices. A pair of bracelet devices identifies the user who is actively touching and the other who is passively touched, defining the direction as being from the former to the latter. By controlling the vibrational feedback, the pair induces a tactile apparent motion representing the direction between two hands. The bracelets are comprised of our developed interpersonal body area network module, an acceleration sensor, and a vibrator. The devices communicate with each other through electrical current flowing along the hands to identify the direction by sharing accelerations just before a touch and to synchronize the feedback in less than ten milliseconds. Experiment 1 demonstrates that the vibration propagated from a bracelet device to the wearer's hand is perceivable by another. Experiment 2 determines sets of optimal actuation parameters, stimulus onset asynchrony, and duration of vibration to induce the tactile apparent motion based on a psychophysical approach. In addition, vibration propagation between hands is observed. Experiment 3 demonstrates the capability of the developed device to present the haptic interaction.

References

[1]
A. H. Crusco and C. G. Wetzel, “The Midas touch: The effects of interpersonal touch on restaurant tipping,” Personality Soc. Psychol. Bull., vol. 10, no. 4, pp. 512–517, 1984.
[2]
C. L. Kleinke, “Compliance to requests made by gazing and touching experimenters in field settings,” J. Exp. Soc. Psychol., vol. 13, no. 3, pp. 218–223, 1977.
[3]
J. Hornik, “Tactile stimulation and consumer response,” J. Consum. Res., vol. 19, no. 3, pp. 449–458, 1992.
[4]
N. Guéguen, “Kind of touch, gender, and compliance with a request,” Studia Psychologica, vol. 44, no. 2, pp. 167–172, 2002.
[5]
J. Hornik and S. Ellis, “Strategies to secure compliance for a mall intercept interview,” Public Opinion Quart., vol. 52, no. 4, pp. 539–551, 1988.
[6]
N. Guéguen, “Touch, awareness of touch, and compliance with a request,” Perceptual Motor Skills, vol. 95, no. 2, pp. 355–360, 2002.
[7]
N. Guéguen, S. Meineri, and V. Charles-Sire, “Improving medication adherence by using practitioner nonverbal techniques: A field experiment on the effect of touch,” J. Behav. Med., vol. 33, no. 6, pp. 466–473, 2010.
[8]
N. Guéguen and J. Fischer-Lokou, “Tactile contact and spontaneous help: An evaluation in a natural setting,” J. Soc. Psychol., vol. 143, no. 6, pp. 785–787, 2003.
[9]
N. Guéguen, “Nonverbal encouragement of participation in a course: The effect of touching,” Soc. Psychol. Educ., vol. 7, no. 1, pp. 89–98, 2004.
[10]
M. W. Kraus, C. Huang, and D. Keltner, “Tactile communication, cooperation, and performance: An ethological study of the NBA,” Emotion, vol. 10, no. 5, pp. 745–749, 2010.
[11]
S. M. Jourard, “An exploratory study of body-accessibility,” Brit. J. Soc. Clin. Psychol., vol. 5, pp. 221–231, Sep. 1966.
[12]
D. R. Maines, “Tactile relationships in the subway as affected by racial, sexual, and crowded seating situations,” Environ. Psychol. Nonverbal Behav., vol. 2, no. 2, pp. 100–108, Dec. 1977. [Online]. Available: https://doi.org/10.1007/BF01145826
[13]
R. Shuter, “A field study of nonverbal communication in Germany, Italy, and the United States,” Commun. Monographs, vol. 44, no. 4, pp. 298–305, 1977. [Online]. Available: https://doi.org/10.1080/03637757709390141
[14]
E. McDaniel and P. A. Andersen, “International patterns of interpersonal tactile communication: A field study,” J. Nonverbal Behav., vol. 22, no. 1, pp. 59–75, 1998.
[15]
A. Gallace and C. Spence, “The science of interpersonal touch: An overview,” Neurosci. Biobehav. Rev., vol. 34, no. 2, pp. 246–259, 2010.
[16]
R.-V. Joule and N. Guéguen, “Touch, compliance, and awareness of tactile contact,” Perceptual Motor Skills, vol. 104, no. 2, pp. 581–588, 2007.
[17]
K. Suzuki, T. Hachisu, and K. Iida, “EnhancedTouch: A smart bracelet for enhancing human– human physical touch,” in Proc. CHI Conf. Human Factors Comput. Syst., New York, NY, USA, 2016, pp. 1282–1293. [Online]. Available: http://doi.acm.org/10.1145/2858036.2858439
[18]
T. Hachisu, B. Bourreau, and K. Suzuki, “EnhancedTouchX: Smart bracelets for augmenting interpersonal touch interactions,” in Proc. CHI Conf. Human Factors Comput. Syst., New York, NY, USA, 2019, Paper 321. [Online]. Available: http://doi.acm.org/10.1145/3290605.3300551
[19]
T. Hachisu and K. Suzuki, “Tactile apparent motion through human-human physical touch,” in Proc. Int. Conf. Human Haptic Sens. Touch Enabled Comput. Appl., 2018, pp. 163–174.
[20]
J. J. Gibson, “Observations on active touch,” Psychol. Rev., vol. 69, pp. 477–491, Nov. 1962.
[21]
C. Harrison, D. Tan, and D. Morris, “Skinput: Appropriating the body as an input surface,” in Proc. SIGCHI Conf. Human Factors Comput. Syst., 2010, pp. 453–462.
[22]
C. Zhang, et al., “TapSkin: Recognizing on-skin input for smartwatches,” in Proc. ACM Interact. Surf. Spaces, 2016, pp. 13–22.
[23]
G. Laput, R. Xiao, and C. Harrison, “ViBand: High-fidelity bio-acoustic sensing using commodity smartwatch accelerometers,” in Proc. 29th Annu. Symp. User Interface Softw. Technol., 2016, pp. 321–333.
[24]
C. Harrison, H. Benko, and A. D. Wilson, “OmniTouch: Wearable multitouch interaction everywhere,” in Proc. 24th Annu. ACM Symp. User Interface Softw. Technol., 2011, pp. 441–450.
[25]
S.-C. Lim, J. Shin, S.-C. Kim, and J. Park, “Expansion of smartwatch touch interface from touchscreen to around device interface using infrared line image sensors,” Sensors, vol. 15, no. 7, pp. 16642–16653, 2015.
[26]
R. Xiao, T. Cao, N. Guo, J. Zhuo, Y. Zhang, and C. Harrison, “LumiWatch: On-arm projected graphics and touch input,” in Proc. CHI Conf. Human Factors Comput. Syst., 2018, p. 95.
[27]
M. Sato, I. Poupyrev, and C. Harrison, “Touché: Enhancing touch interaction on humans, screens, liquids, and everyday objects,” in Proc. SIGCHI Conf. Human Factors Comput. Syst., 2012, pp. 483–492.
[28]
Y. Zhang, J. Zhou, G. Laput, and C. Harrison, “SkinTrack: Using the body as an electrical waveguide for continuous finger tracking on the skin,” in Proc. CHI Conf. Human Factors Comput. Syst., 2016, pp. 1491–1503.
[29]
J. Zhou, Y. Zhang, G. Laput, and C. Harrison, “AuraSense: Enabling expressive around-smartwatch interactions with electric field sensing,” in Proc. 29th Annu. Symp. User Interface Softw. Technol., 2016, pp. 81–86.
[30]
M. Canat, M. O. Tezcan, C. Yurdakul, O. T. Buruk, and O. Ozcan, “Experiencing human-to-human touch in digital games,” in Proc. CHI Conf. Extended Abstr. Human Factors Comput. Syst., 2016, pp. 3655–3658.
[31]
J. Marshall and P. Tennent, “Touchomatic: Interpersonal touch gaming in the wild,” in Proc. Conf. Des. Interact. Syst., New York, NY, USA, 2017, pp. 417–428. [Online]. Available: http://doi.acm.org/10.1145/3064663.3064727
[32]
T. Grosse-Puppendahl, et al., “Finding common ground: A survey of capacitive sensing in human– computer interaction,” in Proc. CHI Conf. Human Factors Comput. Syst., 2017, pp. 3293–3315.
[33]
K. Doi and T. Nishimura, “High-reliability communication technology using human body as transmission medium,” Matsushita Elect. Works Tech. Rep., vol. 53, no. 3, pp. 72–76, 2005.
[34]
Y. Tanaka, Y. Horita, and A. Sano, “Finger-mounted skin vibration sensor for active touch,” in Proc. Int. Conf. Human Haptic Sens. Touch Enabled Comput. Appl., 2012, pp. 169–174.
[35]
Y. Matsuura, S. Okamoto, and Y. Yamada, “Estimation of finger pad deformation based on skin deformation transferred to the radial side,” in Proc. Int. Conf. Human Haptic Sens. Touch Enabled Comput. Appl., 2014, pp. 313–319.
[36]
X. Libouton, O. Barbier, Y. Berger, L. Plaghki, and J.-L. Thonnard, “Tactile roughness discrimination of the finger pad relies primarily on vibration sensitive afferents not necessarily located in the hand,” Behav. Brain Res., vol. 229, no. 1, pp. 273–279, 2012.
[37]
B. Delhaye, V. Hayward, P. Lefèvre, and J.-L. Thonnard, “Texture-induced vibrations in the forearm during tactile exploration,” Frontiers Behav. Neurosci., vol. 6, 2012, Art. no. 37.
[38]
Y. Shao, V. Hayward, and Y. Visell, “Spatial patterns of cutaneous vibration during whole-hand haptic interactions,” Proc. Nat. Acad. Sci. United States Amer., vol. 113, pp. 4188–4193, Apr. 2016.
[39]
H. E. Burtt, “Tactual illusions of movement,” J. Exp. Psychol., vol. 2, no. 5, pp. 371–385, 1917.
[40]
A. K. Whitchurch, “The illusory perception of movement on the skin,” Amer. J. Psychol., vol. 32, no. 4, pp. 472–489, Oct. 1921.
[41]
C. E. Sherrick and R. Rogers, “Apparent haptic movement,” Perception Psychophys., vol. 1, no. 6, pp. 175–180, Jun. 1966.
[42]
H. Culbertson, C. M. Nunez, A. Israr, F. Lau, F. Abnousi, and A. M. Okamura, “A social haptic device to create continuous lateral motion using sequential normal indentation,” in Proc. IEEE Haptics Symp., Mar. 2018, pp. 32–39.
[43]
J. H. Kirman, “Tactile apparent movement: The effects of interstimulus onset interval and stimulus duration,” Perception Psychophys., vol. 15, no. 1, pp. 1–6, Jan. 1974.
[44]
A. Israr and I. Poupyrev, “Control space of apparent haptic motion,” in Proc. IEEE World Haptics Conf., 2011, pp. 457–462.
[45]
A. Israr and I. Poupyrev, “Tactile brush: Drawing on skin with a tactile grid display,” in Proc. SIGCHI Conf. Human Factors Comput. Syst., 2011, pp. 2019–2028.
[46]
S. Ooshima, Y. Fukuzawa, Y. Hashimoto, H. Ando, J. Watanabe, and H. Kajimoto, “/ed (slashed): Gut feelings when being cut and pierced,” in ACM SIGGRAPH New Tech Demos, 2008, Art. no. 14.
[47]
S. Zhao, A. Israr, M. Fenner, and R. Klatzky, “Intermanual apparent tactile motion and its extension to 3D interactions,” IEEE Trans. Haptics, vol. 10, no. 4, pp. 555–566, Oct.-Dec. 2017.
[48]
D. Pittera, M. Obrist, and A. Israr, “Hand-to-hand: An intermanual illusion of movement,” in Proc. 19th ACM Int. Conf. Multimodal Interact., 2017, pp. 73–81.
[49]
G. von Békésy, “Human skin perception of traveling waves similar to those on the cochlea,” J. Acoust. Soc. Amer., vol. 27, no. 5, pp. 830–841, 1955.
[50]
F. A. Geldard and C. E. Sherrick, “The cutaneous “rabbit”: A perceptual illusion,” Science, vol. 178, no. 4057, pp. 178–179, 1972.
[51]
M. Eimer, B. Forster, and J. Vibell, “Cutaneous saltation within and across arms: A new measure of the saltation illusion in somatosensation,” Attention, Perception, Psychophys., vol. 67, no. 3, pp. 458–468, 2005.
[52]
J. P. Warren, M. Santello, and S. I. H. Tillery, “Electrotactile stimuli delivered across fingertips inducing the cutaneous rabbit effect,” Exp. Brain Res., vol. 206, no. 4, pp. 419–426, 2010.
[53]
G. von Békésy, “Similarities between hearing and skin sensations,” Psychol. Rev., vol. 66, no. 1, pp. 1–22, 1959.
[54]
J. Lee, Y. Kim, and G. J. Kim, “Effects of visual feedback on out-of-body illusory tactile sensation when interacting with augmented virtual objects,” IEEE Trans. Human-Mach. Syst., vol. 47, no. 1, pp. 101–112, Feb. 2017.
[55]
S.-C. Lim, D.-S. Kwon, and J. Park, “Tactile apparent motion between both hands based on frequency modulation,” in Haptics: Perception, Devices, Mobility, and Communication, P. Isokoski, J. Springare, Eds., Berlin, Germany: Springer, 2012, pp. 293–300.
[56]
M. Miyazaki, M. Hirashima, and D. Nozaki, “The “cutaneous rabbit” hopping out of the body,” J. Neurosci., vol. 30, no. 5, pp. 1856–1860, 2010.
[57]
J.-J. Cabibihan, R. Pradipta, Y. Chew, and S. Ge, “Towards humanlike social touch for prosthetics and sociable robotics: Handshake experiments and finger phalange indentations,” Proc. FIRA RoboWorld Congr. Adv. Robot., 2009, pp. 73–79.
[58]
M. Morioka and M. J. Griffin, “Absolute thresholds for the perception of fore-and-aft, lateral, and vertical vibration at the hand, the seat, and the foot,” J. Sound Vib., vol. 314, no. 1, pp. 357–370, 2008.
[59]
C. Kaernbach, “Simple adaptive testing with the weighted up-down method,” Attention, Perception, Psychophys., vol. 49, no. 3, pp. 227–229, 1991.

Cited By

View all

Index Terms

  1. Representing Interpersonal Touch Directions by Tactile Apparent Motion Using Smart Bracelets
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image IEEE Transactions on Haptics
      IEEE Transactions on Haptics  Volume 12, Issue 3
      July-Sept. 2019
      162 pages

      Publisher

      IEEE Computer Society Press

      Washington, DC, United States

      Publication History

      Published: 01 July 2019

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 03 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media