skip to main content
research-article

Finding Top-k Preferable Products

Published: 01 October 2012 Publication History

Abstract

The importance of dominance and skyline analysis has been well recognized in multicriteria decision-making applications. Most previous studies focus on how to help customers find a set of “best” possible products from a pool of given products. In this paper, we identify an interesting problem, finding top-k preferable products, which has not been studied before. Given a set of products in the existing market, we want to find a set of k “best” possible products such that these new products are not dominated by the products in the existing market. We study two problem instances of finding top-k preferable products. In the first problem instance, we need to set the prices of these products such that the total profit is maximized. We refer such products as top-k profitable products. In the second problem instance, we want to find k products such that these k products can attract the greatest number of customers. We refer these products as top-k products. In both problem instances, a straightforward solution is to enumerate all possible subsets of size k and find the subset which gives the greatest profit (for the first problem instance) or attracts the greatest number of customers (for the second problem instance). However, there are an exponential number of possible subsets. In this paper, we propose solutions to find the top-k profitable products and the top-k popular products efficiently. An extensive performance study using both synthetic and real data sets is reported to verify the effectiveness and efficiency of proposed algorithms.

Cited By

View all
  1. Finding Top-k Preferable Products

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image IEEE Transactions on Knowledge and Data Engineering
    IEEE Transactions on Knowledge and Data Engineering  Volume 24, Issue 10
    October 2012
    188 pages

    Publisher

    IEEE Educational Activities Department

    United States

    Publication History

    Published: 01 October 2012

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 12 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media