skip to main content
research-article

The Discrete Basis Problem

Published: 01 October 2008 Publication History

Abstract

Matrix decomposition methods represent a data matrix as a product of two factor matrices: one containing basis vectors that represent meaningful concepts in the data, and another describing how the observed data can be expressed as combinations of the basis vectors. Decomposition methods have been studied extensively, but many methods return real-valued matrices. Interpreting real-valued factor matrices is hard if the original data is Boolean. In this paper, we describe a matrix decomposition formulation for Boolean data, the Discrete Basis Problem. The problem seeks for a Boolean decomposition of a binary matrix, thus allowing the user to easily interpret the basis vectors. We also describe a variation of the problem, the Discrete Basis Partitioning Problem. We show that both problems are NP-hard. For the Discrete Basis Problem, we give a simple greedy algorithm for solving it; for the Discrete Basis Partitioning Problem we show how it can be solved using existing methods. We present experimental results for the greedy algorithm and compare it against other, well known methods. Our algorithm gives intuitive basis vectors, but its reconstruction error is usually larger than with the real-valued methods. We discuss about the reasons for this behavior.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering  Volume 20, Issue 10
October 2008
143 pages

Publisher

IEEE Educational Activities Department

United States

Publication History

Published: 01 October 2008

Author Tags

  1. Clustering
  2. Mining methods and algorithms
  3. Text mining
  4. and association rules
  5. classification

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 23 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media