skip to main content
research-article

Unsupervised Joint Salient Region Detection and Object Segmentation

Published: 01 November 2015 Publication History

Abstract

This paper presents a novel unsupervised algorithm to detect salient regions and to segment out foreground objects from background. In contrast to previous unidirectional saliency-based object segmentation methods, in which only the detected saliency map is used to guide the object segmentation, our algorithm mutually exploits detection/segmentation cues from each other. To achieve this goal, an initial saliency map is generated by the proposed segmentation driven low-rank matrix recovery model. Such a saliency map is exploited to initialize object segmentation model, which is formulated as energy minimization of Markov random field. Mutually, the quality of saliency map is further improved by the segmentation result, and serves as a new guidance for the object segmentation. The optimal saliency map and the final segmentation are achieved by jointly optimizing the defined objective functions. Extensive evaluations on MSRA-B and PASCAL-1500 datasets demonstrate that the proposed algorithm achieves the state-of-the-art performance for both the salient region detection and the object segmentation.

References

[1]
W. Zou, K. Kpalma, Z. Liu, and J. Ronsin, “Segmentation driven low-rank matrix recovery for saliency detection,” in Proc. Brit. Mach. Vis. Conf. (BMVC), 2013, pp. 1–13.
[2]
C. Koch and S. Ullman, “Shifts in selective visual attention: Towards the underlying neural circuitry,” in Matters of Intelligence. New York, NY, USA: Springer-Verlag, 1987, pp. 115–141.
[3]
L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 11, pp. 1254–1259, Nov. 1998.
[4]
D. Walther and C. Koch, “Modeling attention to salient proto-objects,” Neural Netw., vol. 19, no. 9, pp. 1395–1407, Nov. 2006.
[5]
D. Gao, V. Mahadevan, and N. Vasconcelos, “The discriminant center-surround hypothesis for bottom-up saliency,” in Proc. Adv. Neural Inf. Process. Syst., vol. 20. 2007, pp. 1–8.
[6]
R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk, “Frequency-tuned salient region detection,” in Proc. IEEE Comput. Vis. Pattern Recognit. (CVPR), Jun. 2009, pp. 1597–1604.
[7]
M.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, and S.-M. Hu, “Global contrast based salient region detection,” in Proc. IEEE Comput. Vis. Pattern Recognit. (CVPR), Jun. 2011, pp. 409–416.
[8]
M.-M. Cheng, N. J. Mitra, X. Huang, P. H. S. Torr, and S.-M. Hu, “Global contrast based salient region detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 3, pp. 569–582, Mar. 2015.
[9]
S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-aware saliency detection,” in Proc. IEEE Comput. Vis. Pattern Recognit. (CVPR), Jun. 2010, pp. 2376–2383.
[10]
H. Jiang, J. Wang, Z. Yuan, T. Liu, N. Zheng, and S. Li, “Automatic salient object segmentation based on context and shape prior,” in Proc. Brit. Mach. Vis. Conf. (BMVC), 2011, pp. 1–9.
[11]
Z. Liu, O. L. Meur, S. Luo, and L. Shen, “Saliency detection using regional histograms,” Opt. Lett., vol. 38, no. 5, pp. 700–702, 2013.
[12]
N. Bruce and J. Tsotsos, “Saliency based on information maximization,” in Proc. Adv. Neural Inf. Process. Syst., vol. 18. 2006, pp. 155–162.
[13]
L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cottrell, “SUN: A Bayesian framework for saliency using natural statistics,” J. Vis., vol. 8, no. 7, p. 32, Dec. 2008.
[14]
J. Harel, C. Koch, and P. Perona, “Graph-based visual saliency,” in Advances in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2007, pp. 545–552.
[15]
T. Avraham and M. Lindenbaum, “Esaliency (extended saliency): Meaningful attention using stochastic image modeling,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 4, pp. 693–708, Apr. 2010.
[16]
T. Liu et al., “Learning to detect a salient object,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 2, pp. 353–367, Feb. 2011.
[17]
H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, and S. Li, “Salient object detection: A discriminative regional feature integration approach,” in Proc. IEEE Comput. Vis. Pattern Recognit. (CVPR), Jun. 2013, pp. 2083–2090.
[18]
Z. Liu, R. Shi, L. Shen, Y. Xue, K. N. Ngan, and Z. Zhang, “Unsupervised salient object segmentation based on kernel density estimation and two-phase graph cut,” IEEE Trans. Multimedia, vol. 14, no. 4, pp. 1275–1289, Aug. 2012.
[19]
V. Gopalakrishnan, Y. Hu, and D. Rajan, “Salient region detection by modeling distributions of color and orientation,” IEEE Trans. Multimedia, vol. 11, no. 5, pp. 892–905, Aug. 2009.
[20]
W. Zhang, Q. M. J. Wu, G. Wang, and H. Yin, “An adaptive computational model for salient object detection,” IEEE Trans. Multimedia, vol. 12, no. 4, pp. 300–316, Jun. 2010.
[21]
Y. Xie, H. Lu, and M. Yang, “Bayesian saliency via low and mid level cues,” IEEE Trans. Image Process., vol. 22, no. 5, pp. 1689–1698, May 2013.
[22]
Z. Liu, W. Zou, and O. Le Meur, “Saliency tree: A novel saliency detection framework,” IEEE Trans. Image Process., vol. 23, no. 5, pp. 1937–1952, May 2014.
[23]
X. Hou and L. Zhang, “Saliency detection: A spectral residual approach,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2007, pp. 1–8.
[24]
C. Guo, Q. Ma, and L. Zhang, “Spatio-temporal saliency detection using phase spectrum of quaternion Fourier transform,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2008, pp. 1–8.
[25]
C. Jung and C. Kim, “A unified spectral-domain approach for saliency detection and its application to automatic object segmentation,” IEEE Trans. Image Process., vol. 21, no. 3, pp. 1272–1283, Mar. 2012.
[26]
F. Perazzi, P. Krahenbuhl, Y. Pritch, and A. Hornung, “Saliency filters: Contrast based filtering for salient region detection,” in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2012, pp. 733–740.
[27]
Q. Yan, L. Xu, J. Shi, and J. Jia, “Hierarchical saliency detection,” in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2013, pp. 1155–1162.
[28]
M.-M. Cheng, J. Warrell, W.-Y. Lin, S. Zheng, V. Vineet, and N. Crook, “Efficient salient region detection with soft image abstraction,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2013, pp. 1529–1536.
[29]
Y. Wei, F. Wen, W. Zhu, and J. Sun, “Geodesic saliency using background priors,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2012, pp. 29–42.
[30]
K.-Y. Chang, T.-L. Liu, H.-T. Chen, and S.-H. Lai, “Fusing generic objectness and visual saliency for salient object detection,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Nov. 2011, pp. 914–921.
[31]
A. Borji, D. N. Sihite, and L. Itti, “Salient object detection: A benchmark,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2012, pp. 414–429.
[32]
J. Yan, M. Zhu, H. Liu, and Y. Liu, “Visual saliency detection via sparsity pursuit,” IEEE Signal Process. Lett., vol. 17, no. 8, pp. 739–742, Aug. 2010.
[33]
X. Shen and Y. Wu, “A unified approach to salient object detection via low rank matrix recovery,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2012, pp. 853–860.
[34]
B. C. Ko and J.-Y. Nam, “Object-of-interest image segmentation based on human attention and semantic region clustering,” J. Opt. Soc. Amer. A, vol. 23, no. 10, pp. 2462–2470, 2006.
[35]
J. Han, K. N. Ngan, M. Li, and H.-J. Zhang, “Unsupervised extraction of visual attention objects in color images,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 1, pp. 141–145, Jan. 2006.
[36]
Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 11, pp. 1222–1239, Nov. 2001.
[37]
E. Rahtu, J. Kannala, M. Salo, and J. Heikkilä, “Segmenting salient objects from images and videos,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2010, pp. 366–379.
[38]
C. Rother, V. Kolmogorov, and A. Blake, “‘GrabCut’: Interactive foreground extraction using iterated graph cuts,” ACM Trans. Graph., vol. 23, no. 3, pp. 309–314, 2004.
[39]
E. J. Candes, X. Li, Y. Ma, and J. Wright. (2009). “Robust principal component analysis?” [Online]. Available: http://arxiv.org/abs/0912.3599
[40]
C. Lang, G. Liu, J. Yu, and S. Yan, “Saliency detection by multitask sparsity pursuit,” IEEE Trans. Image Process., vol. 21, no. 3, pp. 1327–1338, Mar. 2012.
[41]
V. Lempitsky, P. Kohli, C. Rother, and T. Sharp, “Image segmentation with a bounding box prior,” in Proc. IEEE 12th Int. Conf. Comput. Vis. (ICCV), Sep./Oct. 2009, pp. 277–284.
[42]
M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The PASCAL visual object classes (VOC) challenge,” Int. J. Comput. Vis., vol. 88, no. 2, pp. 303–338, Jun. 2010.
[43]
H. G. Feichtinger, Gabor Analysis and Algorithms: Theory and Applications. Boston, MA, USA: Birkhäuser, 1997.
[44]
E. P. Simoncelli and W. T. Freeman, “The steerable pyramid: A flexible architecture for multi-scale derivative computation,” in Proc. IEEE Int. Conf. Image Process., Oct. 1995, pp. 444–447.
[45]
P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 5, pp. 898–916, May 2011.
[46]
D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603–619, May 2002.
[47]
Z. Lin, M. Chen, and Y. Ma. (2010). “The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices.” [Online]. Available: http://arxiv.org/abs/1009.5055
[48]
B. Catanzaro, B.-Y. Su, N. Sundaram, Y. Lee, M. Murphy, and K. Keutzer, “Efficient, high-quality image contour detection,” in Proc. IEEE 12th Int. Conf. Comput. Vis. (ICCV), Sep./Oct. 2009, pp. 2381–2388.

Cited By

View all

Index Terms

  1. Unsupervised Joint Salient Region Detection and Object Segmentation
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Information & Contributors

            Information

            Published In

            cover image IEEE Transactions on Image Processing
            IEEE Transactions on Image Processing  Volume 24, Issue 11
            Nov. 2015
            1407 pages

            Publisher

            IEEE Press

            Publication History

            Published: 01 November 2015

            Author Tags

            1. Low-rank matrix recovery
            2. Saliency detection
            3. object segmentation

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 18 Jan 2025

            Other Metrics

            Citations

            Cited By

            View all

            View Options

            View options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media