skip to main content
research-article

Wi-Fi Fingerprint-Based Indoor Positioning: Recent Advances and Comparisons

Published: 01 January 2016 Publication History

Abstract

The growing commercial interest in indoor location-based services (ILBS) has spurred recent development of many indoor positioning techniques. Due to the absence of global positioning system (GPS) signal, many other signals have been proposed for indoor usage. Among them, Wi-Fi (802.11) emerges as a promising one due to the pervasive deployment of wireless LANs (WLANs). In particular, Wi-Fi fingerprinting has been attracting much attention recently because it does not require line-of-sight measurement of access points (APs) and achieves high applicability in complex indoor environment. This survey overviews recent advances on two major areas of Wi-Fi fingerprint localization: advanced localization techniques and efficient system deployment. Regarding advanced techniques to localize users, we present how to make use of temporal or spatial signal patterns, user collaboration, and motion sensors. Regarding efficient system deployment, we discuss recent advances on reducing offline labor-intensive survey, adapting to fingerprint changes, calibrating heterogeneous devices for signal collection, and achieving energy efficiency for smartphones. We study and compare the approaches through our deployment experiences, and discuss some future directions.

References

[1]
“ Indoor location in retail: Where is the money?” ABI Research: Location Technologies Market Research, May 2015. [Online]. Available: https:// www.abiresearch.com/market-research/service/location-technologies/
[2]
P. Bahl and V. N. Padmanabhan, “ RADAR: An in-building RF-based user location and tracking system,” in Proc. IEEE INFOCOM, 2000, pp. 775– 784.
[3]
S. Liu, Y. Jiang, and A. Striegel, “ Face-to-face proximity estimation using Bluetooth on smartphones,” IEEE Trans. Mobile Comput., vol. 13, no. 4, pp. 811– 823, Apr. 2014.
[4]
X. Zhao, Z. Xiao, A. Markham, N. Trigoni, and Y. Ren, “ Does BTLE measure up against WiFi? A comparison of indoor location performance,” in Proc. Eur. Wireless Conf., May 2014, pp. 1– 6.
[5]
Y. Chen, D. Lymberopoulos, J. Liu, and B. Priyantha, “ FM-based indoor localization,” in Proc. ACM MobiSys, Jun. 2012, pp. 169– 182.
[6]
S. Yoon, K. Lee, and I. Rhee, “ FM-based indoor localization via automatic fingerprint DB construction and matching,” in Proc. ACM MobiSys, 2013, pp. 207– 220.
[7]
L. Ni, Y. Liu, Y. C. Lau, and A. Patil, “ LANDMARC: Indoor location sensing using active RFID,” in Proc. IEEE PerCom, Mar. 2003, pp. 407– 415.
[8]
J. Wang and D. Katabi, “ Dude, where's my card? RFID positioning that works with multipath and non-line of sight,” in Proc. ACM SIGCOMM, 2013, pp. 51– 62.
[9]
L. Yang et al., “ Tagoram: Real-time tracking of mobile RFID tags to high precision using COTS devices,” in Proc. ACM MobiCom, 2014, pp. 237– 248.
[10]
W. Zhuo, B. Zhang, S. Chan, and E. Chang, “ Error modeling and estimation fusion for indoor localization,” in Proc. IEEE ICME, Jul. 2012, pp. 741– 746.
[11]
Z. Sun et al., “ PANDAA: Physical arrangement detection of networked devices through ambient-sound awareness,” in Proc. ACM UbiComp, 2011, pp. 425– 434.
[12]
W. Huang et al., “ Shake and walk: Acoustic direction finding and fine-grained indoor localization using smartphones,” in Proc. IEEE INFOCOM, Apr. 2014, pp. 370– 378.
[13]
Y.-S. Kuo, P. Pannuto, K.-J. Hsiao, and P. Dutta, “ Luxapose: Indoor positioning with mobile phones and visible light,” in Proc. ACM MobiCom, 2014, pp. 447– 458.
[14]
Z. Yang, Z. Wang, J. Zhang, C. Huang, and Q. Zhang, “ Wearables can afford: Light-weight indoor positioning with visible light,” in Proc. ACM MobiSys, 2015, pp. 317– 330.
[15]
J. Chung et al., “ Indoor location sensing using geo-magnetism,” in Proc. ACM MobiSys, New York, NY, USA, 2011, pp. 141– 154.
[16]
H. Xie, T. Gu, X. Tao, H. Ye, and J. Lv, “ MaLoc: A practical magnetic fingerprinting approach to indoor localization using smartphones,” in Proc. ACM UbiComp, 2014, pp. 243– 253.
[17]
S. Yang, P. Dessai, M. Verma, and M. Gerla, “ FreeLoc: Calibration-free crowdsourced indoor localization,” in Proc. IEEE INFOCOM, 2013, pp. 2481– 2489.
[18]
C. Wu, Z. Yang, Y. Liu, and W. Xi, “ WILL: Wireless indoor localization without site survey,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 4, pp. 839– 848, Mar. 2013.
[19]
D. Lymberopoulos et al., “ Microsoft indoor localization competition: Experiences and lessons learned,” SIGMOBILE Mobile Comput. Commun. Rev., vol. 18, no. 4, pp. 24– 31, Jan. 2015.
[20]
D. Han, S. Jung, M. Lee, and G. Yoon, “ Building a practical Wi-Fi-based indoor navigation system,” IEEE Pervasive Comput., vol. 13, no. 2, pp. 72– 79, Apr. 2014.
[21]
Y. Liu, Z. Yang, X. Wang, and L. Jian, “ Location, localization, and localizability,” J. Comput. Sci. Technol., vol. 25, no. 2, pp. 274– 297, Mar. 2010.
[22]
N. Alsindi, R. Raulefs, and C. Teolis, Geolocation Techniques: Principles and Applications.New York, NY, USA: Springer-Verlag, 2012.
[23]
H. Liu et al., “ Push the limit of WiFi based localization for smartphones,” in Proc. ACM MobiCom, Sep. 2012, pp. 305– 316.
[24]
W. Sun et al., “ MoLoc: On distinguishing fingerprint twins,” in Proc. IEEE ICDCS, Jul. 2013, pp. 226– 235.
[25]
Z. Xiao et al., “ Non-line-of-sight identification and mitigation using received signal strength,” IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 1689– 1702, Mar. 2015.
[26]
A. Farshad, J. Li, M. K. Marina, and F. J. Garcia, “ A microscopic look at WiFi fingerprinting for indoor mobile phone localization in diverse environments,” in Proc. IPIN, 2013, pp. 1– 10.
[27]
I. Guvenc and C.-C. Chong, “ A survey on TOA based wireless localization and NLOS mitigation techniques,” IEEE Commun. Surveys Tuts., vol. 11, no. 3, pp. 107– 124, 2009.
[28]
Y. Gu, A. Lo, and I. Niemegeers, “ A survey of indoor positioning systems for wireless personal networks,” IEEE Commun. Surveys Tuts., vol. 11, no. 1, pp. 13– 32, 1st Quart. 2009.
[29]
H. Liu, H. Darabi, P. Banerjee, and J. Liu, “ Survey of wireless indoor positioning techniques and systems,” IEEE Trans. Syst., Man, Cybern., vol. 37, no. 6, pp. 1067– 1080, Nov. 2007.
[30]
F. Seco, A. Jimenez, C. Prieto, J. Roa, and K. Koutsou, “ A survey of mathematical methods for indoor localization,” Proc. IEEE Intell. Signal Process., 2009, pp. 9– 14.
[31]
V. Honkavirta, T. Perala, S. Ali-Loytty, and R. Piché, “ A comparative survey of WLAN location fingerprinting methods,” in Proc. IEEE WPNC, 2009, pp. 243– 251.
[32]
G. Sun, J. Chen, W. Guo, and K. Liu, “ Signal processing techniques in network-aided positioning: A survey of state-of-the-art positioning designs,” IEEE Signal Process. Mag., vol. 22, no. 4, pp. 12– 23, Jul. 2005.
[33]
D. Lymberopoulos et al., “ A realistic evaluation and comparison of indoor location technologies: Experiences and lessons learned,” in Proc. IEEE/ACM IPSN, Apr. 2015, pp. 178– 189.
[34]
A. M. Ossain and W.-S. Soh, “ A survey of calibration-free indoor positioning systems,” Comput. Commun., vol. 66, pp. 1– 13, Jul. 2015. [Online]. Available: https://doi.org/10.1016/j.comcom.2015.03.001
[35]
A. Goswami, L. E. Ortiz, and S. R. Das, “ WiGEM: A learning-based approach for indoor localization,” in Proc. ACM CoNEXT, 2011, pp. 3:1– 3:12.
[36]
J. Jun et al., “ Social-Loc: Improving indoor localization with social sensing,” in Proc. ACM Sensys, 2013, pp. 14:1– 14:14.
[37]
B. Lu, J. Niu, J. Juny, L. Cheng, and Y. Guy, “ WiFi fingerprint localization in open space,” in Proc. IEEE LCN, 2013, pp. 1– 4.
[38]
S. Hilsenbeck, D. Bobkov, G. Schroth, R. Huitl, and E. Steinbach, “ Graph-based data fusion of pedometer and WiFi measurements for mobile indoor positioning,” in Proc. ACM UbiComp, 2014, pp. 147– 158.
[39]
S. He, T. Hu, and S.-H. G. Chan, “ Contour-based trilateration for indoor fingerprinting localization,” in Proc. ACM SenSys, 2015.
[40]
A. Mahtab Hossain, Y. Jin, W.-S. Soh, and H. N. Van, “ SSD: A robust RF location fingerprint addressing mobile devices' heterogeneity,” IEEE Trans. Mobile Comput., vol. 12, no. 1, pp. 65– 77, Jan. 2013.
[41]
S. Sorour, Y. Lostanlen, S. Valaee, and K. Majeed, “ Joint indoor localization and radio map construction with limited deployment load,” IEEE Trans. Mobile Comput., vol. 14, no. 5, pp. 1031– 1043, May 2015.
[42]
J. Niu, B. Lu, L. Cheng, Y. Gu, and L. Shu, “ ZiLoc: Energy efficient WiFi fingerprint-based localization with low-power radio,” in Proc. IEEE WCNC, 2013, pp. 4558– 4563.
[43]
K. Chang and D. Han, “ Crowdsourcing-based radio map update automation for Wi-Fi positioning systems,” in Proc. ACM SIGSPATIAL, 2014, pp. 24– 31.
[44]
H. Wang et al., “ No need to war-drive: Unsupervised indoor localization,” in Proc. ACM MobiSys, 2012, pp. 197– 210.
[45]
G. Shen, Z. Chen, P. Zhang, T. Moscibroda, and Y. Zhang, “ Walkie-Markie: Indoor pathway mapping made easy,” in Proc. USENIX NSDI, 2013, pp. 85– 98.
[46]
C. Peng, G. Shen, Y. Zhang, Y. Li, and K. Tan, “ Beepbeep: A high accuracy acoustic ranging system using cots mobile devices,” in Proc. ACM SenSys, Nov. 2007, pp. 1– 14.
[47]
S. He, S.-H. G. Chan, L. Yu, and N. Liu, “ Fusing noisy fingerprints with distance bounds for indoor localization,” in Proc. IEEE INFOCOM, Apr. 2015, pp. 2506– 2514.
[48]
Z. Xiao, H. Wen, A. Markham, and N. Trigoni, “ Lightweight map matching for indoor localisation using conditional random fields,” in Proc. ACM/IEEE IPSN, 2014, pp. 131– 142.
[49]
Z. Yang, C. Wu, Z. Xinglin, X. Wang, and Y. Liu, “ Mobility increases localizability: A survey on wireless indoor localization using inertial sensors,” ACM Comput. Surveys, vol. 47, no. 3, pp. 54:1– 54:34, Apr. 2015.
[50]
H. Wen, Z. Xiao, N. Trigoni, and P. Blunsom, “ On assessing the accuracy of positioning systems in indoor environments,” in Proc. EWSN, 2013, vol. 7772, pp. 1– 17.
[51]
M. B. Kjærgaard, “ A taxonomy for radio location fingerprinting,” in Location-and Context-Awareness. Berlin, Germany: Springer-Verlag, 2007, pp. 139– 156.
[52]
M. Youssef and A. Agrawala, “ The Horus WLAN location determination system,” in Proc. ACM MobiSys, 2005, pp. 205– 218.
[53]
D. Madigan et al., “ Bayesian indoor positioning systems,” in Proc. IEEE INFOCOM, 2005, vol. 2, pp. 1217– 1227.
[54]
C. Feng, W. S. A. Au, S. Valaee, and Z. Tan, “ Received-signal-strength-based indoor positioning using compressive sensing,” IEEE Trans. Mobile Comput., vol. 11, no. 12, pp. 1983– 1993, Dec. 2012.
[55]
A. W. S. Au et al., “ Indoor tracking and navigation using received signal strength and compressive sensing on a mobile device,” IEEE Trans. Mobile Comput., vol. 12, no. 10, pp. 2050– 2062, Oct. 2013.
[56]
S. He and S.-H. G. Chan, “ Tilejunction: Mitigating signal noise for fingerprint-based indoor localization,” IEEE Trans. Mobile Comput., to be published.
[57]
S. He and G. Chan, “ Sectjunction: Wi-Fi indoor localization based on junction of signal sectors,” in Proc. IEEE ICC, Jun. 2014, pp. 2605– 2610.
[58]
Y. Jiang et al., “ ARIEL: Automatic Wi-Fi based room fingerprinting for indoor localization,” in Proc. ACM UbiComp, Sep. 2012, pp. 441– 450.
[59]
C.-L. Wu, L.-C. Fu, and F.-L. Lian, “ WLAN location determination in e-home via support vector classification,” in Proc. IEEE ICNSC, 2004, vol. 2, pp. 1026– 1031.
[60]
G. Nuño-Barrau and J. M. Páz-Borrallo, “ A new location estimation system for wireless networks based on linear discriminant functions and hidden Markov models,” EURASIP J. Appl. Signal Process., vol. 2006, pp. 159– 159, 2006.
[61]
P. Mirowski, D. Milioris, P. Whiting, and T. Kam Ho, “ Probabilistic radio-frequency fingerprinting and localization on the run,” Bell Labs Techn. J., vol. 18, no. 4, pp. 111– 133, Mar. 2014.
[62]
R. Nandakumar, K. K. Chintalapudi, and V. N. Padmanabhan, “ Centaur: Locating devices in an office environment,” in Proc. ACM MobiCom, 2012, pp. 281– 292.
[63]
R. Ouyang, A. Wong, C.-T. Lea, and M. Chiang, “ Indoor location estimation with reduced calibration exploiting unlabeled data via hybrid generative/discriminative learning,” IEEE Trans. Mobile Comput., vol. 11, no. 11, pp. 1613– 1626, Nov. 2012.
[64]
P. Mirowski et al., “ Probability kernel regression for WiFi localisation,” J. Location Based Services, vol. 6, no. 2, pp. 81– 100, Jun. 2012.
[65]
B. Ferris, D. Fox, and N. D. Lawrence, “ WiFi-SLAM using Gaussian process latent variable models,” in Proc. IJCAI, 2007, vol. 7, pp. 2480– 2485.
[66]
J. Seitz et al., “ A hidden Markov model for urban navigation based on fingerprinting and pedestrian dead reckoning,” in Proc. Int. Conf. FUSION, 2010, pp. 1– 8.
[67]
Y. Kim, H. Shin, and H. Cha, “ Smartphone-based Wi-Fi pedestrian-tracking system tolerating the RSS variance problem,” in Proc. IEEE PerCom, Mar. 2012, pp. 11– 19.
[68]
Y. Jiang et al., “ Hallway based automatic indoor floorplan construction using room fingerprints,” in Proc. Pervasive UbiComp, 2013, pp. 315– 324.
[69]
K. Kaji and N. Kawaguchi, “ Gaussian mixture model and particle filter,” in Proc. IPIN, Nov. 2012, pp. 1– 9.
[70]
Y. Tsuda, Q. Kong, and T. Maekawa, “ Detecting and correcting WiFi positioning errors,” in Proc. ACM UbiComp, 2013, pp. 777– 786.
[71]
C.-C. Huang, Y.-S. Wang, W.-L. Huang, and H. N. Manh, “ Automatic landmark-based RSS compensation for device diversity in an indoor positioning system,” in Proc. IEEE VTS APWCS, 2014, pp. 1– 5.
[72]
M. Azizyan, I. Constandache, and R. Roy Choudhury, “ SurroundSense: Mobile phone localization via ambience fingerprinting,” in Proc. ACM MobiCom, 2009, pp. 261– 272.
[73]
Q. Zhang et al., “ Fingerprint-free tracking with dynamic enhanced field division,” in Proc. IEEE INFOCOM, 2015, pp. 2785– 2793.
[74]
S. Chawathe, “ Beacon placement for indoor localization using Bluetooth,” in Proc. Int. IEEE Conf. Intell. Transp. Syst., Oct. 2008, pp. 980– 985.
[75]
E. Martin, O. Vinyals, G. Friedland, and R. Bajcsy, “ Precise indoor localization using smart phones,” in Proc. ACM MM, 2010, pp. 787– 790.
[76]
L.-W. Chan et al., “ Collaborative localization: Enhancing WiFi-based position estimation with neighborhood links in clusters,” in Proc. Pervasive Comput., 2006, pp. 50– 66.
[77]
I. Constandache, X. Bao, M. Azizyan, and R. R. Choudhury, “ Did you see Bob?: Human localization using mobile phones,” in Proc. ACM MobiCom, 2010, pp. 149– 160.
[78]
N. Banerjee et al., “ Virtual Compass: Relative positioning to sense mobile social interactions,” in Proc. Pervasive, Mar. 2010, pp. 1– 21.
[79]
Wi-Fi Aware: Discover the World Nearby,” 2015. [Online]. Available: http://www.wi-fi.org/discover-wi-fi/wi-fi-aware
[80]
M. Uddin and T. Nadeem, “ RF-Beep: A light ranging scheme for smart devices,” in Proc. IEEE PerCom, Mar. 2013, pp. 114– 122.
[81]
F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “ Vivaldi: A decentralized network coordinate system,” in ACM SIGCOMM Comput. Commun. Rev., vol. 34, no. 4, pp. 15– 26, Oct. 2004.
[82]
R. Sen, Y. Lee, K. Jayarajah, A. Misra, and R. K. Balan, “ GruMon: Fast and accurate group monitoring for heterogeneous urban spaces,” in Proc. ACM SenSys, 2014, pp. 46– 60.
[83]
T. Higuchi, S. Fujii, H. Yamaguchi, and T. Higashinoz, “ An efficient localization algorithm focusing on stop-and-go behavior of mobile nodes,” in Proc. IEEE PerCom, 2011, pp. 205– 212.
[84]
T. Higuchi, S. Fujii, H. Yamaguchi, and T. Higashino, “ Mobile node localization focusing on stop-and-go behavior of indoor pedestrians,” IEEE Trans. Mobile Comput., vol. 13, no. 7, pp. 1564– 1578, Jul. 2014.
[85]
J. Krumm and K. Hinckley, “ The NearMe wireless proximity server,” in Proc. ACM UbiComp, 2004, pp. 283– 300.
[86]
A. Symington and N. Trigoni, “ Encounter based sensor tracking,” in Proc. ACM MobiHoc, 2012, pp. 15– 24.
[87]
Z. Yang, X. Feng, and Q. Zhang, “ Adometer: Push the limit of pedestrian indoor localization through cooperation,” IEEE Trans. Mobile Comput., vol. 13, no. 11, pp. 2473– 2483, Nov. 2014.
[88]
H. Liu et al., “ Accurate WiFi based localization for smartphones using peer assistance,” IEEE Trans. Mobile Comput., vol. 13, no. 10, pp. 2199– 2214, Oct. 2014.
[89]
R. Shokri, G. Theodorakopoulos, C. Troncoso, J.-P. Hubaux, and J.-Y. Le Boudec, “ Protecting location privacy: Optimal strategy against localization attacks,” in Proc. ACM CCS, 2012, pp. 617– 627.
[90]
J. Y. Tsai, P. G. Kelley, L. F. Cranor, and N. Sadeh, “ Location-sharing technologies: Privacy risks and controls,” J. Law Policy Inf. Soc., vol. 6, no. 2, pp. 119– 151, 2010.
[91]
R. Harle, “ A survey of indoor inertial positioning systems for pedestrians,” IEEE Commun. Surveys Tuts., vol. 15, no. 3, pp. 1281– 1293, 3rd 2013.
[92]
N. Roy, H. Wang, and R. R. Choudhury, “ I am a smartphone and I can tell my users walking direction,” in Proc. ACM MobiSys, 2014, pp. 329– 342.
[93]
A. Brajdic and R. Harle, “ Walk detection and step counting on unconstrained smartphones,” in Proc ACM UbiComp, 2013, pp. 225– 234.
[94]
P. Goyal, V. J. Ribeiro, H. Saran, and A. Kumar, “ Strap-down pedestrian dead-reckoning system,” in Proc. IPIN, 2011, pp. 1– 7.
[95]
M.-S. Pan and H.-W. Lin, “ A step counting algorithm for smartphone users: Design and implementation,” IEEE Sens. J., vol. 15, no. 4, pp. 2296– 2305, Dec. 2014.
[96]
F. Li et al., “ A reliable and accurate indoor localization method using phone inertial sensors,” in Proc. ACM UbiComp, Sep. 2012, pp. 421– 430.
[97]
M. Susi, V. Renaudin, and G. Lachapelle, “ Motion mode recognition and step detection algorithms for mobile phone users,” Sensors, vol. 13, no. 2, pp. 1539– 1562, 2013.
[98]
W. Zijlstra, “ Assessment of spatio-temporal parameters during unconstrained walking,” Eur. J. Appl. Physiol., vol. 92, no. 1–2, pp. 39– 44, Jun. 2004.
[99]
A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen, “ Zee: Zero-effort crowdsourcing for indoor localization,” in Proc. ACM MobiCom, 2012, pp. 293– 304.
[100]
J. Qian, J. Ma, R. Ying, and P. Liu, “ RPNOS: Reliable pedestrian navigation on a smartphone,” in Geo-Informatics in Resource Management and Sustainable Ecosystem. Berlin, Germany: Springer-Verlag, 2013, pp. 188– 199.
[101]
K.-C. Lan and W.-Y. Shih, “ On calibrating the sensor errors of a PDR-based indoor localization system,” Sensors, vol. 13, no. 4, pp. 4781– 4810, Apr. 2013.
[102]
M. Uddin and T. Nadeem, “ SpyLoc: A light weight localization system for smartphones,” in Proc. IEEE SECON, Jun. 2014, pp. 72– 80.
[103]
S. He, S.-H. Chan, L. Yu, and N. Liu, “ Calibration-free fusion of step counter and wireless fingerprints for indoor localization,” in Proc. ACM UbiComp, 2015.
[104]
Z. Xiao, H. Wen, A. Markham, and N. Trigoni, “ Robust indoor positioning with lifelong learning,” IEEE J. Sel. Areas Commun., vol. 33, no. 11, pp. 2287– 2301, Nov. 2015.
[105]
V. Radu and M. K. Marina, “ HiMLoc: Indoor smartphone localization via activity aware pedestrian dead reckoning with selective crowdsourced WiFi fingerprinting,” in Proc. IPIN, 2013, pp. 1– 10.
[106]
M. Hardegger, G. Tröster, and D. Roggen, “ Improved actionSLAM for long-term indoor tracking with wearable motion sensors,” in Proc. ISWC, 2013, pp. 1– 8.
[107]
M. Sousa, A. Techmer, A. Steinhage, C. Lauterbach, and P. Lukowicz, “ Human tracking and identification using a sensitive floor and wearable accelerometers,” in Proc. IEEE PerCom, 2013, pp. 166– 171.
[108]
H. Durrant-Whyte and T. Bailey, “ Simultaneous localization and mapping: Part I,” IEEE Robot. Autom. Mag., vol. 13, no. 2, pp. 99– 110, Jun. 2006.
[109]
F. Herranz, Á. Llamazares, E. Molinos, M. Ocaña, and M. Á. Sotelo, “ WiFi SLAM algorithms: An experimental comparison,” Robotica, pp. 1– 22, Jul. 2014, to be published. [Online]. Available: http://journals.cambridge.org/article_S0263574714001908
[110]
T. Bailey and H. Durrant-Whyte, “ Simultaneous localization and mapping (SLAM): Part II,” IEEE Robot. Autom. Mag., vol. 13, no. 3, pp. 108– 117, Sep. 2006.
[111]
S. Thrun, “ Probabilistic algorithms in robotics,” AI Mag., vol. 21, no. 4, p. 93, 2000.
[112]
M. Angermann and P. Robertson, “ FootSLAM: Pedestrian simultaneous localization and mapping without exteroceptive sensors-hitchhiking on human perception and cognition,” Proc. IEEE, vol. 100, Special Centennial Issue, pp. 1840– 1848, May 2012.
[113]
J. Huang et al., “ Efficient, generalized indoor WiFi GraphSLAM,” in Proc. IEEE ICRA, 2011, pp. 1038– 1043.
[114]
L. Bruno and P. Robertson, “ WiSLAM: Improving FootSLAM with WiFi,” in Proc. IPIN, 2011, pp. 1– 10.
[115]
Z. Chen et al., “ Fusion of WiFi, smartphone sensors and landmarks using the Kalman filter for indoor localization,” Sensors, vol. 15, no. 1, pp. 715– 732, Jan. 2015.
[116]
S. Ali-Loytty, T. Perala, V. Honkavirta, and R. Piche, “ Fingerprint Kalman filter in indoor positioning applications,” in Proc. IEEE CCA ISIC,, Jul. 2009, pp. 1678– 1683.
[117]
F. Evennou and F. Marx, “ Advanced integration of WIFI and inertial navigation systems for indoor mobile positioning,” EURASIP J. Appl. Signal Process., vol. 2006, pp. 164– 164, Jan. 2006.
[118]
W. Chai, C. Chen, E. Edwan, J. Zhang, and O. Loffeld, “ INS/Wi-Fi based indoor navigation using adaptive Kalman filtering and vehicle constraints,” in Proc. WPNC, Mar. 2012, pp. 36– 41.
[119]
M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “ A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking,” IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174– 188, Feb. 2002.
[120]
Y. Gao et al., “ XINS: The anatomy of an indoor positioning and navigation architecture,” in Proc. MLBS (UbiComp Workshop), 2011, pp. 41– 50.
[121]
J. Yim, S. Jeong, K. Gwon, and J. Joo, “ Improvement of Kalman filters for WLAN based indoor tracking,” Expert Syst. Appl., vol. 37, no. 1, pp. 426– 433, Jan. 2010.
[122]
Z. Xiao, H. Wen, A. Markham, and N. Trigoni, “ Indoor tracking using undirected graphical models,” IEEE Trans. Mobile Comput., vol. 14, no. 11, pp. 2286– 2301, Nov. 2015.
[123]
B. Zhou, Q. Li, Q. Mao, W. Tu, and X. Zhang, “ Activity sequence-based indoor pedestrian localization using smartphones,” IEEE Trans. Human-Mach. Syst., vol. 45, no. 5, pp. 562– 574, Oct. 2015.
[124]
J.-G. Park, “ Indoor localization using place and motion signatures,” Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA, USA, 2013.
[125]
R. Klinger and K. Tomanek, “ Classical probabilistic models and conditional random fields,” Technische Universitat Dortmund, Dortmund, Germany, TU, Algorithm Eng., 2007.
[126]
T. A. Cohn, “ Scaling conditional random fields for natural language processing,” Ph.D. dissertation, Dept. Comput. Sci. Softw. Eng., Univ. Melbourne, Melbourne, Vic., Australia, 2007.
[127]
A.-A. Liu, K. Li, and T. Kanade, “ Mitosis sequence detection using hidden conditional random fields,” in Proc. IEEE Int. Symp. Biomed. Imaging: From Nano Macro, 2010, pp. 580– 583.
[128]
Google Project Tango,” 2015. [Online]. Available: https://www.google.com/atap/project-tango/
[129]
H. Lim, L.-C. Kung, J. C. Hou, and H. Luo, “ Zero-configuration indoor localization over IEEE 802.11 wireless infrastructure,” Wireless Netw., vol. 16, no. 2, pp. 405– 420, Feb. 2010.
[130]
J.-G. Park et al., “ Growing an organic indoor location system,” in Proc. ACM MobiSys, Jun. 2010, pp. 271– 284.
[131]
K. Chintalapudi, A. Padmanabha Iyer, and V. N. Padmanabhan, “ Indoor localization without the pain,” in Proc. ACM MobiCom, 2010, pp. 173– 184.
[132]
L. Li, W. Yang, and G. Wang, “ HIWL: An unsupervised learning algorithm for indoor wireless localization,” in Proc. IEEE TrustCom, 2013, pp. 1747– 1753.
[133]
N. T. Nguyen, R. Zheng, and Z. Han, “ UMLI: An unsupervised mobile locations extraction approach with incomplete data,” in Proc. IEEE WCNC, Apr. 2013, pp. 2119– 2124.
[134]
H.-Y. Wang, V. W. Zheng, J. Zhao, and Q. Yang, “ Indoor localization in multi-floor environments with reduced effort,” in Proc. IEEE PerCom, 2010, pp. 244– 252.
[135]
J. Ledlie et al., “ Molé: A scalable, user-generated WiFi positioning engine,” J. Location Based Serv., vol. 6, no. 2, pp. 55– 80, Sep. 2012.
[136]
C. Luo, H. Hong, and M. C. Chan, “ PiLoc: A self-calibrating participatory indoor localization system,” in Proc. ACM/IEEE IPSN, Apr. 2014, pp. 143– 154.
[137]
C. M. Bishop et al., Pattern Recognition and Machine Learning, vol. 1. New York, NY, USA: Springer-Verlag, 2006.
[138]
Z. Yang, C. Wu, and Y. Liu, “ Locating in fingerprint space: Wireless indoor localization with little human intervention,” in Proc. ACM MobiCom, 2012, pp. 269– 280.
[139]
Y.-C. Chen, J.-R. Chiang, H.-H. Chu, P. Huang, and A. W. Tsui, “ Sensor-assisted Wi-Fi indoor location system for adapting to environmental dynamics,” in Proc. ACM MSWiM, 2005, pp. 118– 125.
[140]
C.-C. Lo, L.-Y. Hsu, and Y.-C. Tseng, “ Adaptive radio maps for pattern-matching localization via inter-beacon co-calibration,” Pervasive Mobile Comput., vol. 8, no. 2, pp. 282– 291, Apr. 2012.
[141]
A. M. Bernardos, J. R. Casar, and P. Tarrío, “ Real time calibration for RSS indoor positioning systems,” in Proc. IPIN, Sep. 2010, pp. 1– 7.
[142]
M. M. Atia, A. Noureldin, and M. J. Korenberg, “ Dynamic online-calibrated radio maps for indoor positioning in wireless local area networks,” IEEE Trans. Mobile Comput., vol. 12, no. 9, pp. 1774– 1787, Sep. 2013.
[143]
S. J. Pan, J. T. Kwok, Q. Yang, and J. J. Pan, “ Adaptive localization in a dynamic WiFi environment through multi-view learning,” in Proc. AAAI, 2007, pp. 1108– 1113.
[144]
R. Hansen, R. Wind, C. S. Jensen, and B. Thomsen, “ Algorithmic strategies for adapting to environmental changes in 802.11 location fingerprinting,” in Proc. IPIN, 2010, pp. 1– 10.
[145]
J. Yin, Q. Yang, and L. Ni, “ Adaptive temporal radio maps for indoor location estimation,” in Proc. IEEE PerCom, 2005, pp. 85– 94.
[146]
J. Yin, Q. Yang, and L. M. Ni, “ Learning adaptive temporal radio maps for signal-strength-based location estimation,” IEEE Trans. Mobile Comput., vol. 7, no. 7, pp. 869– 883, Jul. 2008.
[147]
J. Han and M. Kamber, Data Mining, Southeast Asia Edition: Concepts and Techniques. San Mateo, CA, USA: Morgan Kaufmann, 2006.
[148]
C. E. Rasmussen, Gaussian Processes for Machine Learning, vol. 3176, O. Bousquet, U. von Luxburg, and G. Rtsch, Eds. Berlin, Germany: Springer-Verlag, 2006.
[149]
A. Bekkali, T. Masuo, T. Tominaga, N. Nakamoto, and H. Ban, “ Gaussian processes for learning-based indoor localization,” in Proc. IEEE ICSPCC, Sep. 2011, pp. 1– 6.
[150]
M. Youssef and A. Agrawala, “ Small-scale compensation for WLAN location determination systems,” in Proc. IEEE WCNC, 2003, vol. 3, pp. 1974– 1978.
[151]
E. Alpaydin, Introduction to Machine Learning. Cambridge, MA, USA: MIT Press, 2004.
[152]
J.-S. Lim, W.-H. Jang, G.-W. Yoon, and D.-S. Han, “ Radio map update automation for WiFi positioning systems,” IEEE Commun. Lett., vol. 17, no. 4, pp. 693– 696, Apr. 2013.
[153]
T. Gallagher, B. Li, A. G. Dempster, and C. Rizos, “ Database updating through user feedback in fingerprint-based Wi-Fi location systems,” in Proc. UPINLBS, 2010, pp. 1– 8.
[154]
Y. Kim, H. Shin, Y. Chon, and H. Cha, “ Crowdsensing-based Wi-Fi radio map management using a lightweight site survey,” Comput. Commun., vol. 60, pp. 86– 96, Apr. 2015.
[155]
D. Taniuchi and T. Maekawa, “ Automatic update of indoor location fingerprints with pedestrian dead reckoning,” ACM Trans. Embedded Comput. Syst., vol. 14, no. 2, pp. 27, Feb. 2015.
[156]
C. Wu et al., “ Static power of mobile devices: Self-updating radio maps for wireless indoor localization,” in Proc. IEEE INFOCOM, 2015, pp. 2497– 2505.
[157]
P. Sharma et al., “ KARMA: Improving WiFi-based indoor localization with dynamic causality calibration,” in Proc. IEEE SECON, Jun. 2014, pp. 90– 98.
[158]
iFixit: Smartphones Repairment,” Nov. 2014. [Online]. Available: https://www.ifixit.com/
[159]
N. Brouwers, M. Zuniga, and K. Langendoen, “ Incremental Wi-Fi scanning for energy-efficient localization,” in Proc. IEEE PerCom, 2014, pp. 156– 162.
[160]
A. Haeberlen et al., “ Practical robust localization over large-scale 802.11 wireless networks,” in Proc. ACM MobiCom, 2004, pp. 70– 84.
[161]
M. B. Kjargaard, “ Indoor location fingerprinting with heterogeneous clients,” Pervasive Mobile Comput., vol. 7, no. 1, pp. 31– 43, 2011.
[162]
C. Laoudias, D. Zeinalipour-Yazti, and C. Panayiotou, “ Crowdsourced indoor localization for diverse devices through radiomap fusion,” in Proc. IPIN, 2013, vol. 25, p. 28.
[163]
J.-G. Park, D. Curtis, S. Teller, and J. Ledlie, “ Implications of device diversity for organic localization,” in Proc. IEEE INFOCOM, Apr. 2011, pp. 3182– 3190.
[164]
W. Cheng, K. Tan, V. Omwando, J. Zhu, and P. Mohapatra, “ RSS-Ratio for enhancing performance of rss-based applications,” in Proc. IEEE INFOCOM, Apr. 2013, pp. 3075– 3083.
[165]
L. Li et al., “ Experiencing and handling the diversity in data density and environmental locality in an indoor positioning service,” in Proc. ACM MobiCom, 2014, pp. 459– 470.
[166]
L.-H. Chen, E.-K. Wu, M.-H. Jin, and G.-H. Chen, “ Homogeneous features utilization to address the device heterogeneity problem in fingerprint localization,” IEEE Sens. J., vol. 14, no. 4, pp. 998– 1005, Apr. 2014.
[167]
K. Yedavalli, B. Krishnamachari, S. Ravula, and B. Srinivasan, “ Ecolocation: A sequence based technique for RF localization in wireless sensor networks,” in Proc. ACM/IEEE IPSN, 2005, pp. 38:1– 38:8.
[168]
M. Raspopoulos et al., “ Cross device fingerprint-based positioning using 3D ray tracing,” in Proc. IWCMC, Aug. 2012, pp. 147– 152.
[169]
S.-H. Fang, C.-H. Wang, S.-M. Chiou, and P. Lin, “ Calibration-free approaches for robust Wi-Fi positioning against device diversity: A performance comparison,” in Proc. IEEE VTC—Spring, May 2012, pp. 1– 5.
[170]
Z. Zhuang, K.-H. Kim, and J. P. Singh, “ Improving energy efficiency of location sensing on smartphones,” in Proc. ACM MobiSys, 2010, pp. 315– 330.
[171]
M. B. Kjærgaard, “ Location-based services on mobile phones: Minimizing power consumption,” IEEE Pervasive Comput., vol. 11, no. 1, pp. 67– 73, Jan. 2012.
[172]
Y. Gao, J. Niu, R. Zhou, and G. Xing, “ ZiFind: Exploiting cross-technology interference signatures for energy-efficient indoor localization,” in Proc. IEEE INFOCOM, 2013, pp. 2940– 2948.
[173]
Y. Chen, Q. Yang, J. Yin, and X. Chai, “ Power-efficient access-point selection for indoor location estimation,” IEEE Trans. Knowl. Data Eng., vol. 18, no. 7, pp. 877– 888, Jul. 2006.
[174]
I. Constandache, S. Gaonkar, M. Sayler, R. R. Choudhury, and L. Cox, “ Energy-efficient localization via personal mobility profiling,” in Mobile Computing, Applications, and Services, vol. 35, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. New York, NY, USA: Springer-Verlag, 2010, pp. 203– 222.
[175]
S.-H. Fang and T.-N. Lin, “ Principal component localization in indoor WLAN environments,” IEEE Trans. Mobile Comput., vol. 11, no. 1, pp. 100– 110, Jan. 2012.
[176]
J. Yin, Q. Yang, and L. Ni, “ A group-discrimination-based access point selection for WLAN fingerprinting localization,” IEEE Trans. Veh. Technol., vol. 63, no. 8, p. 3967, Oct. 2014.
[177]
X. Zhang and K. G. Shin, “ Enabling coexistence of heterogeneous wireless systems: Case for ZigBee and WiFi,” in Proc. ACM MobiHoc, 2011, pp. 6:1– 6:11.
[178]
I. Shafer and M. L. Chang, “ Movement detection for power-efficient smartphone WLAN localization,” in Proc. ACM MSWIM, 2010, pp. 81– 90.
[179]
H. Aly and M. Youssef, “ Dejavu: An accurate energy-efficient outdoor localization system,” in Proc. ACM SIGSPATIAL, 2013, pp. 154– 163.
[180]
M. Abdellatif, A. Mtibaa, K. A. Harras, and M. Youssef, “ GreenLoc: An energy efficient architecture for WiFi-based indoor localization on mobile phones,” in Proc. IEEE ICC, 2013, pp. 4425– 4430.
[181]
I. Constandache, S. Gaonkar, M. Sayler, R. Choudhury, and L. Cox, “ EnLoc: Energy-efficient localization for mobile phones,” in Proc. IEEE INFOCOM, Apr. 2009, pp. 2716– 2720.
[182]
A. J. Khan, V. Ranjan, T.-T. Luong, R. Balan, and A. Misra, “ Experiences with performance tradeoffs in practical, continuous indoor localization,” in Proc. IEEE WoWMoM, 2013, pp. 1– 9.
[183]
F. Ben Abdesslem, A. Phillips, and T. Henderson, “ Less is more: Energy-efficient mobile sensing with senseless,” in Proc. ACM MobiHeld, 2009, pp. 61– 62.
[184]
S. Taleb, N. Abbas, H. Hajj, and Z. Dawy, “ On sensor selection in mobile devices based on energy, application accuracy, and context metrics,” in Proc. ICCIT, Jun. 2013, pp. 12– 16.
[185]
L. Zhang, J. Liu, H. Jiang, and Y. Guan, “ SensTrack: Energy-efficient location tracking with smartphone sensors,” IEEE Sens. J., vol. 13, no. 10, pp. 3775– 3784, Oct. 2013.
[186]
S. Eisa, J. Peixoto, F. Meneses, and A. Moreira, “ Removing useless APs and fingerprints from WiFi indoor positioning radio maps,” in Proc. IPIN, 2013, pp. 1– 7.
[187]
Y. Zhang and Q. Li, “ Exploiting ZigBee in reducing WiFi power consumption for mobile devices,” IEEE Trans. Mobile Comput., vol. 13, no. 12, pp. 2806– 2819, Dec. 2014.
[188]
A. Neishaboori and K. Harras, “ Energy saving strategies in WiFi indoor localization,” in Proc. ACM MSWiM, 2013, pp. 399– 404.
[189]
Insiteo,” 2015. [Online]. Available: http://www.insiteo.com/
[190]
Wifarer,” 2015. [Online]. Available: http://www.wifarer.com/
[191]
Pole star,” 2015. [Online]. Available: www.polestar.eu/en/
[192]
Infsoft,” 2015. [Online]. Available: http://www.infsoft.com/
[193]
Navizon,” 2015. [Online]. Available: https://www.navizon.com/
[194]
[195]
Z. Yang, Z. Zhou, and Y. Liu, “ From RSSI to CSI: Indoor localization via channel response,” ACM Comput. Surveys, vol. 46, no. 2, p. 25, Dec. 2013.
[196]
Y. Wang et al., “ E-eyes: Device-free location-oriented activity identification using fine-grained WiFi signatures,” in Proc. ACM MobiCom, 2014, pp. 617– 628.
[197]
K. Wu, J. Xiao, Y. Yi, M. Gao, and L. M. Ni, “ FILA: Fine-grained indoor localization,” in Proc. IEEE INFOCOM, Mar. 2012, pp. 2210– 2218.
[198]
K. Wu et al., “ CSI-based indoor localization,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 7, pp. 1300– 1309, Jul. 2013.
[199]
Y. Jin, W.-S. Soh, and W.-C. Wong, “ Indoor localization with channel impulse response based fingerprint and nonparametric regression,” IEEE Trans. Wireless Commun., vol. 9, no. 3, pp. 1120– 1127, Mar. 2010.
[200]
J. Hong and T. Ohtsuki, “ Signal eigenvector-based device-free passive localization using array sensor,” IEEE Trans. Veh. Technol., vol. 64, no. 4, pp. 1354– 1363, Apr. 2015.
[201]
J. Hong and T. Ohtsuki, “ State classification with array sensor using support vector machine for wireless monitoring systems,” IEICE Trans. Commun., vol. 95, no. 10, pp. 3088– 3095, 2012.
[202]
J. Xiao et al., “ NomLoc: Calibration-free indoor localization with nomadic access points,” in Proc. IEEE ICDCS, Jun. 2014, pp. 587– 596.
[203]
M. Li, P. Zhou, Y. Zheng, Z. Li, and G. Shen, “ IODetector: A generic service for indoor/outdoor detection,” ACM Trans. Sens. Netw., vol. 11, no. 2, pp. 28:1– 28:29, Dec. 2014.
[204]
V. Radu, P. Katsikouli, R. Sarkar, and M. K. Marina, “ A semi-supervised learning approach for robust indoor-outdoor detection with smartphones,” in Proc. ACM SenSys, 2014, pp. 280– 294.
[205]
Y. Tian et al., “ Towards ubiquitous indoor localization service leveraging environmental physical features,” in Proc. IEEE INFOCOM, Apr. 2014, pp. 55– 63.
[206]
Y. Zheng et al., “ Travi-Navi: Self-deployable indoor navigation system,” in Proc. ACM MobiCom, 2014, pp. 471– 482.
[207]
S. Papaioannou, H. Wen, A. Markham, and N. Trigoni, “ Fusion of radio and camera sensor data for accurate indoor positioning,” in Proc. IEEE MASS, Oct. 2014, pp. 109– 117.
[208]
X. Xiong et al., “ SmartGuide: Towards single-image building localization with smartphone,” in Proc. ACM MobiHoc, 2015, pp. 117– 126.
[209]
L. Shangguan et al., “ CrossNavi: Enabling real-time crossroad navigation for the blind with commodity phones,” in Proc. ACM UbiComp, 2014, pp. 787– 798.
[210]
H. A. Yanco, “ Wheelesley: A robotic wheelchair system: Indoor navigation and user interface,” in Assistive Technology and Artificial Intelligence, vol. 1458, Lecture Notes in Computer Science.Berlin, Germany: Springer-Verlag, 1998, pp. 256– 268.
[211]
A. Helal, S. Moore, and B. Ramachandran, “ Drishti: An integrated navigation system for visually impaired and disabled,” in Proc. IEEE ISWC, 2001, pp. 149– 156.
[212]
H. Ye et al., “ FTrack: Infrastructure-free floor localization via mobile phone sensing,” in Proc. IEEE PerCom, 2012, pp. 2– 10.
[213]
H. Ye, T. Gu, X. Tao, and J. Lu, “ SBC: Scalable smartphone barometer calibration through crowdsourcing,” in Proc. MobiQuitous, 2014, pp. 60– 69.
[214]
K. Muralidharan, A. J. Khan, A. Misra, R. K. Balan, and S. Agarwal, “ Barometric phone sensors: More hype than hope!” in Proc. ACM HotMobile, 2014, pp. 12:1– 12:6.
[215]
H. Ye, T. Gu, X. Tao, and J. Lu, “ F-Loc: Floor localization via crowdsourcing,” in Proc. IEEE ICPADS, Dec. 2014, pp. 47– 54.
[216]
A. Varshavsky, A. LaMarca, J. Hightower, and E. de Lara, “ The SkyLoc floor localization system,” in Proc. IEEE PerCom, 2007, pp. 125– 134.
[217]
P. Bhargava, S. Krishnamoorthy, A. K. Nakshathri, M. Mah, and A. Agrawala, “ Locus: An indoor localization, tracking and navigation system for multi-story buildings using heuristics derived from Wi-Fi signal strength,” in Proc. MobiQuitous, 2013, pp. 212– 223.
[218]
S. Kumar, S. Gil, D. Katabi, and D. Rus, “ Accurate indoor localization with zero start-up cost,” in Proc. ACM MobiCom, 2014, pp. 483– 494.
[219]
A. Hossain and W.-S. Soh, “ Cramer-Rao bound analysis of localization using signal strength difference as location fingerprint,” in Proc. IEEE INFOCOM, Mar. 2010, pp. 1– 9.
[220]
Y. Chen, J. Francisco, W. Trappe, and R. Martin, “ A practical approach to landmark deployment for indoor localization,” in Proc. IEEE SECON, Sep. 2006, vol. 1, pp. 365– 373.
[221]
K. Sheng et al., “ The collocation of measurement points in large open indoor environment,” in Proc. IEEE INFOCOM, Apr. 2015, pp. 2488– 2496.
[222]
H. Wen, Z. Xiao, A. Markham, and N. Trigoni, “ Accuracy estimation for sensor systems,” IEEE Trans. Mobile Comput., vol. 14, no. 7, pp. 1330– 1343, Jul. 2015.
[223]
Y. Wen, X. Tian, X. Wang, and S. Lu, “ Fundamental limits of RSS fingerprinting based indoor localization,” in Proc. IEEE INFOCOM, Apr. 2015, pp. 2479– 2487.
[224]
J.-I. Jung, H.-W. Cho, and S.-S. Lee, “ A study of data mining method for indoor positioning on smartphones,” in Convergence and Hybrid Information Technology, vol. 7425, Lecture Notes in Computer Science. Berlin, Germany: Springer-Verlag, 2012, pp. 683– 697.
[225]
D. H. Kim, K. Han, and D. Estrin, “ Employing user feedback for semantic location services,” in Proc. ACM UbiComp, 2011, pp. 217– 226.
[226]
Y. Wang, Y. Chen, and R. Martin, “ Leveraging Wi-Fi signals to monitor human queues,” IEEE Pervasive Comput., vol. 13, no. 2, pp. 14– 17, Apr. 2014.

Cited By

View all

Index Terms

  1. Wi-Fi Fingerprint-Based Indoor Positioning: Recent Advances and Comparisons
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image IEEE Communications Surveys & Tutorials
    IEEE Communications Surveys & Tutorials  Volume 18, Issue 1
    Firstquarter 2016
    898 pages

    Publisher

    IEEE Press

    Publication History

    Published: 01 January 2016

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 06 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media