skip to main content
research-article

Improved upper bounds on sizes of codes

Published: 01 September 2006 Publication History

Abstract

Let A(n,d) denote the maximum possible number of codewords in a binary code of length n and minimum Hamming distance d. For large values of n, the best known upper bound, for fixed d, is the Johnson bound. We give a new upper bound which is at least as good as the Johnson bound for all values of n and d, and for each d there are infinitely many values of n for which the new bound is better than the Johnson bound. For small values of n and d, the best known method to obtain upper bounds on A(n,d) is linear programming. We give new inequalities for the linear programming and show that with these new inequalities some of the known bounds on A(n,d) for n⩽28 are improved

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image IEEE Transactions on Information Theory
IEEE Transactions on Information Theory  Volume 48, Issue 4
April 2002
208 pages

Publisher

IEEE Press

Publication History

Published: 01 September 2006

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media