skip to main content
research-article

Low-density MDS codes and factors of complete graphs

Published: 01 September 2006 Publication History

Abstract

We present a class of array code of size n×l, where l=2n or 2n+1, called B-Code. The distances of the B-Code and its dual are 3 and l-1, respectively. The B-Code and its dual are optimal in the sense that i) they are maximum-distance separable (MDS), ii) they have an optimal encoding property, i.e., the number of the parity bits that are affected by change of a single information bit is minimal, and iii) they have optimal length. Using a new graph description of the codes, we prove an equivalence relation between the construction of the B-Code (or its dual) and a combinatorial problem known as perfect one-factorization of complete graphs, thus obtaining constructions of two families of the B-Code and its dual, one of which is new. Efficient decoding algorithms are also given, both for erasure correcting and for error correcting. The existence of perfect one-factorizations for every complete graph with an even number of nodes is a 35 years long conjecture in graph theory. The construction of B-Codes of arbitrary odd length will provide an affirmative answer to the conjecture

Cited By

View all
  1. Low-density MDS codes and factors of complete graphs

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image IEEE Transactions on Information Theory
    IEEE Transactions on Information Theory  Volume 45, Issue 6
    September 1999
    478 pages

    Publisher

    IEEE Press

    Publication History

    Published: 01 September 2006

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 30 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media