skip to main content
article

Hensel lifting and bivariate polynomial factorisation over finite fields

Published: 01 October 2002 Publication History

Abstract

This paper presents an average time analysis of a Hensel lifting based factorisation algorithm for bivariate polynomials over finite fields. It is shown that the average running time is almost linear in the input size. This explains why the Hensel lifting technique is fast in practice for most polynomials.

References

[1]
1. W. S. BROWN, "On Euclid's algorithm and the computation of polynomial greatest common divisors", J. ACM18 (1971), 478-504. MR 46:6570
[2]
2. D.G. CANTOR AND E. KALTOFEN, "On fast multiplication of polynomials over arbitrary algebras", Acta Inform. 28 (1991), 693-701. MR 92i:68068
[3]
3. L. CARLITZ, "The arithmetic of polynomials in a Galois field", Amer. J. Math. 54 (1932), 39-50.
[4]
4. G. E. COLLINS, "Factoring univariate integral polynomials in polynomial average time", Symbolic and algebraic computation (EUROSAM '79, Internat. Sympos., Marseille, 1979), pp. 317-329, Lecture Notes in Comput. Sci., 72, Springer, Berlin-New York, 1979. MR 81g:68064
[5]
5. P. FLAJOLET, X. GOURDON AND D. PANARIO, "Random polynomials and polynomial factorization", Automata, languages and programming (Paderborn, 1996), 232-243, Lecture Notes in Comput. Sci., 1099, Springer, Berlin, 1996. MR 98e:68123
[6]
6. S. GAO, "Absolute irreducibility of polynomials via Newtonpolytopes," J. Algebra 237 (2001), 501-520. CMP 2001:09 (Available at URL: http ://www.math.elemson.edu/faculty/Gao)
[7]
7. S. GAO AND A. G. B. LAUDER, "Decomposition of polytopes and polynomials," Discrete and Computational Geometry. 26 (2001), 89-104. CMP 2001:13 (Available at URL: http://www.math.clemson.edu/faculty/Gao)
[8]
8. J. VON ZUR GATHEN AND V. SHOUP, "Computing Frobenius maps and factoring polynomials", Computational Complexity2 (1992), 187-224. MR 94d:12011
[9]
9. K. O. GEDDES, S. R. CZAPOR AND G. LABAHN, Algorithms for Computer Algebra, Kluwer, Boston/Dordrecht/London, 1992. MR 96a:68049
[10]
10. E. KALTOFEN AND V. SHOUP, "Subquadratic-time factoring of polynomials over finite fields", Math. Comp. 67 (1998), no. 223, 1179-1197. MR 99m:68097
[11]
11. D.R. MUSSER, "Multivariate polynomial factorization", J. ACM22 (1975), 291-308. MR 53:335a
[12]
12. A. SCHÖNHAGE AND V. STRASSEN, "Schnelle Multiplikation großer Zahlen", Computing7 (1971), 281-292. MR 45:1431
[13]
13. D. WAN, "Factoring polynomials over large finite fields", Math. Comp. 54 (1990), No. 190, 755-770. MR 90i:11141
[14]
14. P. S. WANG, "An improved multivariate polynomial factorization algorithm", Math. Comp. 32 (1978), 1215-1231. MR 58:27887b
[15]
15. P. S. WANG AND L. P. ROTHSCHILD, "Factoring multivariate polynomials over the integers," Math. Comp. 29 (1975), 935-950. MR 53:335b
[16]
16. H. ZASSENHAUS, "On Hensel factorization I", J. Number Theory 1 (1969), 291-311. MR 39:4120

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Mathematics of Computation
Mathematics of Computation  Volume 71, Issue 240
October 2002
457 pages

Publisher

American Mathematical Society

United States

Publication History

Published: 01 October 2002

Author Tags

  1. Hansel lifting
  2. averagecase complexity
  3. bivariate polynomial
  4. factorisation
  5. finite field

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media