skip to main content
article

Modeling of silicon oxynitride etch microtrenching using genetic algorithm and neural network

Published: 01 March 2006 Publication History

Abstract

A prediction model of etch microtrenching was constructed by using a neural network. The etching of silicon oxynitride films was conducted in C"2F"6 inductively coupled plasma. The process parameters that were varied in a statistical experimental design include radio frequency source power, bias power, pressure, and C"2F"6 flow rate. The etch microtrenching was quantified from scanning electron microscope images. The prediction accuracy of optimized neural network model with genetic algorithm had a root mean-squared error of 0.03nm/min. Compared to conventional model, this demonstrates an improvement of about 32%. The constructed model was used to infer etch mechanisms particularly as a function of pressure. Roles of profile sidewall variations were investigated by relating them to the microtrenchings. The pressure effect was conspicuous at lower source power, lower bias power, or higher C"2F"6 flow rate. Microtrenching variations could be reasonably explained by the expected ion reflection from the profile sidewall. The pressure effect seemed to be strongly affected by the relative dominance of fluorine-driven etching over polymer deposition initially maintained in the chamber.

References

[1]
Konofaos, N., Evangelou, E.K., Aslanoglou, X., Kokkoris, M. and Vlastou, R., . Semicond. Sci. Technol. v19. 50
[2]
Germann, R., Salemink, H.W., Beyeler, R., Bona, G.L., Horst, F., Massarek, I. and Offrein, B.J., . J. Electrochem. Soc. v147. 2237
[3]
Kim, Y.T., Cho, S.M., Seo, Y.G., Yoon, H.D., Im, Y.M. and Yoon, D.H., . Surf. Coat. Technol. v173. 204
[4]
Plucinski, K.J., Makawska, M., Mefleh, A., Kityk, I.V. and Yushanin, V.G., . Mater. Sci. Eng. B. v64. 88
[5]
Kim, B., Lee, D., Kim, N.J. and Lee, B.T., . J. Vac. Sci. Technol. A. v23. 520
[6]
Westerheim, A.C., Labun, A.H., Dubash, J.H., Arnold, J.C., Sawin, H.H. and Yu-Wang, V., . J. Vac. Sci. Technol. A. v13. 853
[7]
Kim, B., Kong, S. and Lee, B.T., . J. Vac. Sci. Technol. A. v20. 146
[8]
Shrauner, B.A., . J. Vac. Sci. Technol. B. v19. 711
[9]
Rummelhart, D.E. and McClelland, J.L., Parallel Distributed Processing. 1986. MIT Press, Cambridge.
[10]
Kim, B. and Kim, S., . Microelectron. Eng. v75. 397
[11]
Kim, B., kwon, K.H., Kwon, S.K., Park, J.M., Yoo, S.W., Park, K.S. and Kim, B.W., . J. Vac. Sci. Technol. B. v20. 2113
[12]
Kim, B. and Park, S., . IEEE Trans. Plasma Sci. v30. 698
[13]
Kim, B. and Hong, W.S., . IEEE Trans. Plasma Sci. v32. 84
[14]
Kim, B. and Park, S., . Chemommetr. Intell. Syst. v56. 39
[15]
Park, J. and Sandberg, I., . Neural Computation. v3. 246
[16]
Specht, D.F., . IEEE Trans. Neural Network. v2. 568
[17]
Kim, B. and Park, K., . Microelectron. Eng. v77. 150
[18]
Kim, B., Lee, D. and Kwon, K.H., . J. Appl. Phys. v96. 3612
[19]
Kim, B., Kim, S. and Lee, B.T., . J. Vac. Sci. Technol. B. v22. 2467
[20]
Kim, B. and Lee, B.T., . J. Vac. Sci. Technol. A. v22. 2517
[21]
Goldberg, D.E., Genetic Algorithms in Search, Optimization & Machine Learning. 1989. Addison Wesley, Reading, MA.
[22]
Montgomery, D.C., Design and Analysis of Experiments. 1991. Wiley, Singapore.
[23]
Ho, P., Johannes, J.E., Buss, R.J. and Meeks, E., . J. Vac. Sci. Technol. A. v19. 2344
[24]
Kim, B., Sun, J.H., Choi, C.J., Lee, D.D. and Seol, Y.S., . J. Vac. Sci. Technol. A. v18. 417
[25]
Coburn, J.W. and Winters, H.F., . Annu. Rev. Mater. Sci. v13. 91

Cited By

View all
  1. Modeling of silicon oxynitride etch microtrenching using genetic algorithm and neural network

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Microelectronic Engineering
    Microelectronic Engineering  Volume 83, Issue 3
    March, 2006
    197 pages

    Publisher

    Elsevier Science Ltd.

    United Kingdom

    Publication History

    Published: 01 March 2006

    Author Tags

    1. Microtrenching
    2. Neural network
    3. Plasma etching
    4. Silicon oxynitride film
    5. Statistical experimental design

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 03 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media