skip to main content
research-article

A comprehensive overview of knowledge graph completion

Published: 14 November 2022 Publication History

Abstract

Knowledge Graph (KG) provides high-quality structured knowledge for various downstream knowledge-aware tasks (such as recommendation and intelligent question-answering) with its unique advantages of representing and managing massive knowledge. The quality and completeness of KGs largely determine the effectiveness of the downstream tasks. But in view of the incomplete characteristics of KGs, there is still a large amount of valuable knowledge is missing from the KGs. Therefore, it is necessary to improve the existing KGs to supplement the missed knowledge. Knowledge Graph Completion (KGC) is one of the popular technologies for knowledge supplement. Accordingly, there has a growing concern over the KGC technologies. Recently, there have been lots of studies focusing on the KGC field. To investigate and serve as a helpful resource for researchers to grasp the main ideas and results of KGC studies, and further highlight ongoing research in KGC, in this paper, we provide a all-round up-to-date overview of the current state-of-the-art in KGC.
According to the information sources used in KGC methods, we divide the existing KGC methods into two main categories: the KGC methods relying on structural information and the KGC methods using other additional information. Further, each category is subdivided into different granularity for summarizing and comparing them. Besides, the other KGC methods for KGs of special fields (including temporal KGC, commonsense KGC, and hyper-relational KGC) are also introduced. In particular, we discuss comparisons and analyses for each category in our overview. Finally, some discussions and directions for future research are provided.

References

[1]
Hogan Aidan, Blomqvist Eva, Cochez Michael, d’Amato Claudia, de Melo Gerard, Gutierrez Claudio, Gayo José Emilio Labra, Kirrane Sabrina, Neumaier Sebastian, Polleres Axel, et al., Knowledge graphs, 2020, arXiv preprint arXiv:2003.02320.
[2]
Li Wanli, Qian Tieyun, Zhong Ming, Chen Xu, Interactive lexical and semantic graphs for semisupervised relation extraction, IEEE Trans. Neural Netw. Learn. Syst. (2022).
[3]
Zhong Ming, Zheng Yingyi, Xue Guotong, Liu Mengchi, Reliable keyword query interpretation on summary graphs, IEEE Trans. Knowl. Data Eng. (2022).
[4]
Lehmann Jens, Isele Robert, Jakob Max, Jentzsch Anja, Kontokostas Dimitris, Mendes Pablo N., Hellmann Sebastian, Morsey Mohamed, Van Kleef Patrick, Auer Sören, et al., Dbpedia–a large-scale, multilingual knowledge base extracted from wikipedia, Semant. Web 6 (2) (2015) 167–195.
[5]
Bollacker Kurt, Evans Colin, Paritosh Praveen, Sturge Tim, Taylor Jamie, Freebase: a collaboratively created graph database for structuring human knowledge, in: ACM SIGMOD International Conference on Management of Data, 2008, pp. 1247–1250.
[6]
Miller George A., WordNet: a lexical database for English, Commun. ACM 38 (11) (1995) 39–41.
[7]
Suchanek Fabian M., Kasneci Gjergji, Weikum Gerhard, Yago: a core of semantic knowledge, in: WWW, 2007, pp. 697–706.
[8]
Rosso Paolo, Yang Dingqi, Cudré-Mauroux Philippe, Beyond triplets: hyper-relational knowledge graph embedding for link prediction, in: The Web Conference, 2020, pp. 1885–1896.
[9]
Dong Xin, Gabrilovich Evgeniy, Heitz Geremy, Horn Wilko, Lao Ni, Murphy Kevin, Strohmann Thomas, Sun Shaohua, Zhang Wei, Knowledge vault: A web-scale approach to probabilistic knowledge fusion, in: ACM SIGKDD KDD, 2014, pp. 601–610.
[10]
Bordes Antoine, Glorot Xavier, Weston Jason, Bengio Yoshua, A semantic matching energy function for learning with multi-relational data, Mach. Learn. 94 (2) (2014) 233–259.
[11]
Bordes Antoine, Usunier Nicolas, Garcia-Duran Alberto, Weston Jason, Yakhnenko Oksana, Translating embeddings for modeling multi-relational data, in: NIPS, 2013, pp. 1–9.
[12]
Lin Yankai, Liu Zhiyuan, Sun Maosong, Liu Yang, Zhu Xuan, Learning entity and relation embeddings for knowledge graph completion, in: AAAI, Vol. 29, 2015.
[13]
Nickel Maximilian, Tresp Volker, Kriegel Hans-Peter, A three-way model for collective learning on multi-relational data, in: ICML, 2011.
[14]
Socher Richard, Chen Danqi, Manning Christopher D., Ng Andrew, Reasoning with neural tensor networks for knowledge base completion, in: NIPS, Citeseer, 2013, pp. 926–934.
[15]
Wang Zhen, Zhang Jianwen, Feng Jianlin, Chen Zheng, Knowledge graph embedding by translating on hyperplanes, in: AAAI, Vol. 28, 2014.
[16]
Wang Quan, Mao Zhendong, Wang Bin, Guo Li, Knowledge graph embedding: A survey of approaches and applications, TKDE 29 (12) (2017) 2724–2743.
[17]
Gesese Genet Asefa, Biswas Russa, Alam Mehwish, Sack Harald, A survey on knowledge graph embeddings with literals: Which model links better literal-ly?, 2019.
[18]
Rossi Andrea, Barbosa Denilson, Firmani Donatella, Matinata Antonio, Merialdo Paolo, Knowledge graph embedding for link prediction: A comparative analysis, TKDD 15 (2) (2021) 1–49.
[19]
Kejriwal Mayank, Advanced Topic: Knowledge Graph Completion, 2019.
[20]
Nguyen Dat Quoc, An overview of embedding models of entities and relationships for knowledge base completion, 2017.
[21]
Cai Hongyun, Zheng Vincent W., Chang Kevin Chen-Chuan, A comprehensive survey of graph embedding: Problems, techniques, and applications, TKDE 30 (9) (2018) 1616–1637.
[22]
Goyal Palash, Ferrara Emilio, Graph embedding techniques, applications, and performance: A survey, Knowl.-Based Syst. 151 (2018) 78–94.
[23]
Ji Shaoxiong, Pan Shirui, Cambria Erik, Marttinen Pekka, Yu Philip S., A survey on knowledge graphs: Representation, acquisition and applications, 2020, arXiv preprint arXiv:2002.00388.
[24]
Paulheim Heiko, Knowledge graph refinement: A survey of approaches and evaluation methods, Semant. Web 8 (3) (2017) 489–508.
[25]
Shi Baoxu, Weninger Tim, Open-world knowledge graph completion, in: AAAI, Vol. 32, 2018.
[26]
Borrego Agustín, Ayala Daniel, Hernández Inma, Rivero Carlos R., Ruiz David, Generating rules to filter candidate triples for their correctness checking by knowledge graph completion techniques, in: KCAP, 2019, pp. 115–122.
[27]
Goodfellow Ian J., Pouget-Abadie Jean, Mirza Mehdi, Xu Bing, Warde-Farley David, Ozair Sherjil, Courville Aaron, Bengio Yoshua, Generative adversarial networks, 2014, arXiv preprint arXiv:1406.2661.
[28]
Cai Liwei, Wang William Yang, Kbgan: Adversarial learning for knowledge graph embeddings, 2017, arXiv preprint arXiv:1711.04071.
[29]
Hu Kairong, Liu Hai, Hao Tianyong, A knowledge selective adversarial network for link prediction in knowledge graph, in: CCF NLPCC, Springer, 2019, pp. 171–183.
[30]
Niu Jinghao, Sun Zhengya, Zhang Wensheng, Enhancing knowledge graph completion with positive unlabeled learning, in: ICPR, IEEE, 2018, pp. 296–301.
[31]
Wang Yanjie, Gemulla Rainer, Li Hui, On multi-relational link prediction with bilinear models, in: AAAI, Vol. 32, 2018.
[32]
Kristina Toutanova, Danqi Chen, Observed versus latent features for knowledge base and text inference, in: Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality, 2015, pp. 57–66.
[33]
Dettmers Tim, Minervini Pasquale, Stenetorp Pontus, Riedel Sebastian, Convolutional 2d knowledge graph embeddings, in: AAAI, Vol. 32, 2018.
[34]
Ke Tu, Peng Cui, Daixin Wang, Zhiqiang Zhang, Jun Zhou, Yuan Qi, Wenwu Zhu, Conditional graph attention networks for distilling and refining knowledge graphs in recommendation, in: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021, pp. 1834–1843.
[35]
Shi Baoxu, Weninger Tim, Discriminative predicate path mining for fact checking in knowledge graphs, Knowl.-Based Syst. 104 (2016) 123–133.
[36]
Jia Shengbin, Xiang Yang, Chen Xiaojun, Wang Kun, Triple trustworthiness measurement for knowledge graph, in: The World Wide Web Conference, 2019, pp. 2865–2871.
[37]
Balažević Ivana, Allen Carl, Hospedales Timothy M., Tucker: Tensor factorization for knowledge graph completion, 2019, arXiv preprint arXiv:1901.09590.
[38]
Jenatton Rodolphe, Le Roux Nicolas, Bordes Antoine, Obozinski Guillaume, A latent factor model for highly multi-relational data, in: NIPS), 2012, pp. 3176–3184.
[39]
Garcia-Duran Alberto, Bordes Antoine, Usunier Nicolas, Grandvalet Yves, Combining two and three-way embeddings models for link prediction in knowledge bases, 2015, arXiv preprint arXiv:1506.00999.
[40]
Liu Hanxiao, Wu Yuexin, Yang Yiming, Analogical inference for multi-relational embeddings, in: ICML, PMLR, 2017, pp. 2168–2178.
[41]
Tay Yi, Luu Anh Tuan, Hui Siu Cheung, Brauer Falk, Random semantic tensor ensemble for scalable knowledge graph link prediction, in: WSDM, 2017, pp. 751–760.
[42]
Yang Bishan, Yih Wen-tau, He Xiaodong, Gao Jianfeng, Deng Li, Embedding entities and relations for learning and inference in knowledge bases, 2014, arXiv preprint arXiv:1412.6575.
[43]
Trouillon Théo, Welbl Johannes, Riedel Sebastian, Gaussier Éric, Bouchard Guillaume, Complex embeddings for simple link prediction, in: ICML, PMLR, 2016, pp. 2071–2080.
[44]
Kazemi Seyed Mehran, Poole David, Simple embedding for link prediction in knowledge graphs, 2018, arXiv preprint arXiv:1802.04868.
[45]
Moniruzzaman ABM, Nayak Richi, Tang Maolin, Balasubramaniam Thirunavukarasu, Fine-grained type inference in knowledge graphs via probabilistic and tensor factorization methods, in: WWW, 2019, pp. 3093–3100.
[46]
Sameh K. Mohamed, Nová Vít, TriVec: Knowledge Graph Embeddings for Accurate and Efficient Link Prediction in Real World Application Scenarios.
[47]
Kadlec Rudolf, Bajgar Ondrej, Kleindienst Jan, Knowledge base completion: Baselines strike back, 2017, arXiv preprint arXiv:1705.10744.
[48]
Manabe Hitoshi, Hayashi Katsuhiko, Shimbo Masashi, Data-dependent learning of symmetric/antisymmetric relations for knowledge base completion, in: AAAI, Vol. 32, 2018.
[49]
Ding Boyang, Wang Quan, Wang Bin, Guo Li, Improving knowledge graph embedding using simple constraints, 2018, arXiv preprint arXiv:1805.02408.
[50]
Lacroix Timothée, Usunier Nicolas, Obozinski Guillaume, Canonical tensor decomposition for knowledge base completion, in: ICML, PMLR, 2018, pp. 2863–2872.
[51]
Kishimoto Koki, Hayashi Katsuhiko, Akai Genki, Shimbo Masashi, Binarized canonical polyadic decomposition for knowledge graph completion, 2019, arXiv preprint arXiv:1912.02686.
[52]
Zhang Shuai, Tay Yi, Yao Lina, Liu Qi, Quaternion knowledge graph embeddings, 2019, arXiv preprint arXiv:1904.10281.
[53]
Balkir Esma, Naslidnyk Masha, Palfrey Dave, Mittal Arpit, Using pairwise occurrence information to improve knowledge graph completion on large-scale datasets, 2019, arXiv preprint arXiv:1910.11583.
[54]
Padia Ankur, Kalpakis Konstantinos, Ferraro Francis, Finin Tim, Knowledge graph fact prediction via knowledge-enriched tensor factorization, J. Web Semant. 59 (2019).
[55]
Tucker Ledyard R., Some mathematical notes on three-mode factor analysis, Psychometrika 31 (3) (1966) 279–311.
[56]
Kolda Tamara G., Bader Brett W., Tensor decompositions and applications, SIAM Rev. 51 (3) (2009) 455–500.
[57]
Harshman Richard A., Models for analysis of asymmetrical relationships among N objects or stimuli, in: First Joint Meeting of the Psychometric Society and the Society of Mathematical Psychology, Hamilton, Ontario, 1978, 1978.
[58]
Nickel Maximilian, Rosasco Lorenzo, Poggio Tomaso, Holographic embeddings of knowledge graphs, in: AAAI, Vol. 30, 2016.
[59]
Harshman Richard A., Lundy Margaret E., PARAFAC: Parallel factor analysis, Comput. Statist. Data Anal. 18 (1) (1994) 39–72.
[60]
Lee Daniel D., Seung H. Sebastian, Learning the parts of objects by non-negative matrix factorization, Nature 401 (6755) (1999) 788–791.
[61]
Salakhutdinov Ruslan, Srebro Nathan, Collaborative filtering in a non-uniform world: Learning with the weighted trace norm, 2010, arXiv preprint arXiv:1002.2780.
[62]
Friedland Shmuel, Lim Lek-Heng, Nuclear norm of higher-order tensors, Math. Comp. 87 (311) (2018) 1255–1281.
[63]
Das Rajarshi, Dhuliawala Shehzaad, Zaheer Manzil, Vilnis Luke, Durugkar Ishan, Krishnamurthy Akshay, Smola Alex, McCallum Andrew, Go for a walk and arrive at the answer: Reasoning over paths in knowledge bases using reinforcement learning, 2017, arXiv preprint arXiv:1711.05851.
[64]
Liu Quan, Jiang Hui, Evdokimov Andrew, Ling Zhen-Hua, Zhu Xiaodan, Wei Si, Hu Yu, Probabilistic reasoning via deep learning: Neural association models, 2016, arXiv preprint arXiv:1603.07704.
[65]
Guan Saiping, Jin Xiaolong, Wang Yuanzhuo, Cheng Xueqi, Shared embedding based neural networks for knowledge graph completion, in: ACM CIKM, 2018, pp. 247–256.
[66]
Feihu Che, Dawei Zhang, Jianhua Tao, Mingyue Niu, Bocheng Zhao, Parame: Regarding neural network parameters as relation embeddings for knowledge graph completion, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 2774–2781.
[67]
Vashishth Shikhar, Sanyal Soumya, Nitin Vikram, Agrawal Nilesh, Talukdar Partha, Interacte: Improving convolution-based knowledge graph embeddings by increasing feature interactions, in: AAAI, Vol. 34, 2020, pp. 3009–3016.
[68]
Dai Quoc Nguyen Tu Dinh Nguyen, Nguyen Dat Quoc, Phung Dinh, A novel embedding model for knowledge base completion based on convolutional neural network, in: NAACL-HLT, 2018, pp. 327–333.
[69]
Nguyen Dai Quoc, Vu Thanh, Nguyen Tu Dinh, Nguyen Dat Quoc, Phung Dinh, A capsule network-based embedding model for knowledge graph completion and search personalization, 2018, arXiv preprint arXiv:1808.04122.
[70]
Schlichtkrull Michael, Kipf Thomas N., Bloem Peter, Van Den Berg Rianne, Titov Ivan, Welling Max, Modeling relational data with graph convolutional networks, in: ESWC, Springer, 2018, pp. 593–607.
[71]
Shang Chao, Tang Yun, Huang Jing, Bi Jinbo, He Xiaodong, Zhou Bowen, End-to-end structure-aware convolutional networks for knowledge base completion, in: AAAI, Vol. 33, 2019, pp. 3060–3067.
[72]
Vashishth Shikhar, Sanyal Soumya, Nitin Vikram, Talukdar Partha, Composition-based multi-relational graph convolutional networks, in: International Conference on Learning Representations, 2019.
[73]
Bengio Yoshua, Ducharme Réjean, Vincent Pascal, Janvin Christian, A neural probabilistic language model, J. Mach. Learn. Res. 3 (2003) 1137–1155.
[74]
Collobert Ronan, Weston Jason, Bottou Léon, Karlen Michael, Kavukcuoglu Koray, Kuksa Pavel, Natural language processing (almost) from scratch, J. Mach. Learn. Res. 12 (ARTICLE) (2011) 2493–2537.
[75]
Mikolov Tomas, Chen Kai, Corrado Greg, Dean Jeffrey, Efficient estimation of word representations in vector space, 2013, arXiv preprint arXiv:1301.3781.
[76]
Krizhevsky Alex, Sutskever Ilya, Hinton Geoffrey E., Imagenet classification with deep convolutional neural networks, NIPS 25 (2012) 1097–1105.
[77]
Sabour Sara, Frosst Nicholas, Hinton Geoffrey E., Dynamic routing between capsules, 2017, arXiv preprint arXiv:1710.09829.
[78]
Bruna Joan, Zaremba Wojciech, Szlam Arthur, LeCun Yann, Spectral networks and locally connected networks on graphs, 2014.
[79]
Li Na, Bouraoui Zied, Schockaert Steven, Ontology completion using graph convolutional networks, in: ISWC, Springer, 2019, pp. 435–452.
[80]
Duvenaud David, Maclaurin Dougal, Aguilera-Iparraguirre Jorge, Gómez-Bombarelli Rafael, Hirzel Timothy, Aspuru-Guzik Alán, Adams Ryan P., Convolutional networks on graphs for learning molecular fingerprints, 2015, arXiv preprint arXiv:1509.09292.
[81]
Grover Aditya, Zweig Aaron, Ermon Stefano, Graphite: Iterative generative modeling of graphs, in: ICML, PMLR, 2019, pp. 2434–2444.
[82]
Kipf Thomas N., Welling Max, Semi-supervised classification with graph convolutional networks, 2016, arXiv preprint arXiv:1609.02907.
[83]
Song Xiangyu, Li Jianxin, Lei Qi, Zhao Wei, Chen Yunliang, Mian Ajmal, Bi-CLKT: Bi-graph contrastive learning based knowledge tracing, Knowl.-Based Syst. 241 (2022).
[84]
Song Xiangyu, Li Jianxin, Tang Yifu, Zhao Taige, Chen Yunliang, Guan Ziyu, Jkt: A joint graph convolutional network based deep knowledge tracing, Inform. Sci. 580 (2021) 510–523.
[85]
Corbett Albert T., Anderson John R., Knowledge tracing: Modeling the acquisition of procedural knowledge, User Model. User-Adapt. Interact. 4 (4) (1994) 253–278.
[86]
Yang Yaming, Guan Ziyu, Li Jianxin, Zhao Wei, Cui Jiangtao, Wang Quan, Interpretable and efficient heterogeneous graph convolutional network, IEEE Trans. Knowl. Data Eng. (2021).
[87]
Sun Yizhou, Han Jiawei, Yan Xifeng, Yu Philip S., Wu Tianyi, Pathsim: Meta path-based top-k similarity search in heterogeneous information networks, Proc. VLDB Endow. 4 (11) (2011) 992–1003.
[88]
Goodfellow Ian J., Pouget-Abadie Jean, Mirza Mehdi, Xu Bing, Warde-Farley David, Ozair Sherjil, Courville Aaron, Bengio Yoshua, Generative adversarial networks, 2014, arXiv preprint arXiv:1406.2661.
[89]
Yu Lantao, Zhang Weinan, Wang Jun, Yu Yong, Seqgan: Sequence generative adversarial nets with policy gradient, in: AAAI, Vol. 31, 2017.
[90]
Sun Zhiqing, Vashishth Shikhar, Sanyal Soumya, Talukdar Partha, Yang Yiming, A re-evaluation of knowledge graph completion methods, 2019, arXiv preprint arXiv:1911.03903.
[91]
Nathani Deepak, Chauhan Jatin, Sharma Charu, Kaul Manohar, Learning attention-based embeddings for relation prediction in knowledge graphs, in: ACL, 2019, pp. 4710–4723.
[92]
Pennington Jeffrey, Socher Richard, Manning Christopher D., Glove: Global vectors for word representation, in: EMNLP, 2014, pp. 1532–1543.
[93]
Oh Byungkook, Seo Seungmin, Lee Kyong-Ho, Knowledge graph completion by context-aware convolutional learning with multi-hop neighborhoods, in: ACM CIKM, 2018, pp. 257–266.
[94]
Xie Ruobing, Liu Zhiyuan, Jia Jia, Luan Huanbo, Sun Maosong, Representation learning of knowledge graphs with entity descriptions, in: AAAI, Vol. 30, 2016.
[95]
Zhao Minjun, Zhao Yawei, Xu Bing, Knowledge graph completion via complete attention between knowledge graph and entity descriptions, in: CSAE, 2019, pp. 1–6.
[96]
Zia Tehseen, Zahid Usman, Windridge David, A generative adversarial strategy for modeling relation paths in knowledge base representation learning, 2019.
[97]
Ji Guoliang, He Shizhu, Xu Liheng, Liu Kang, Zhao Jun, Knowledge graph embedding via dynamic mapping matrix, in: ACL and IJCNLP (Volume 1: Long Papers), 2015, pp. 687–696.
[98]
Yoon Hee-Geun, Song Hyun-Je, Park Seong-Bae, Park Se-Young, A translation-based knowledge graph embedding preserving logical property of relations, in: NAACL: Human Language Technologies, 2016, pp. 907–916.
[99]
Do Kien, Tran Truyen, Venkatesh Svetha, Knowledge graph embedding with multiple relation projections, in: ICPR, IEEE, 2018, pp. 332–337.
[100]
Nguyen Dat Quoc, Sirts Kairit, Qu Lizhen, Johnson Mark, STransE: a novel embedding model of entities and relationships in knowledge bases, in: HLT-NAACL, 2016.
[101]
Feng Jun, Huang Minlie, Wang Mingdong, Zhou Mantong, Hao Yu, Zhu Xiaoyan, Knowledge graph embedding by flexible translation, in: KR, 2016, pp. 557–560.
[102]
Fan Miao, Zhou Qiang, Chang Emily, Zheng Fang, Transition-based knowledge graph embedding with relational mapping properties, in: PACLIC, 2014, pp. 328–337.
[103]
Xie Qizhe, Ma Xuezhe, Dai Zihang, Hovy Eduard H., An interpretable knowledge transfer model for knowledge base completion, in: ACL (1), 2017.
[104]
Qian Wei, Fu Cong, Zhu Yu, Cai Deng, He Xiaofei, Translating embeddings for knowledge graph completion with relation attention mechanism, in: IJCAI, 2018, pp. 4286–4292.
[105]
Yuan Jun, Gao Neng, Xiang Ji, TransGate: knowledge graph embedding with shared gate structure, in: AAAI, Vol. 33, 2019, pp. 3100–3107.
[106]
Zhou Xiaofei, Zhu Qiannan, Liu Ping, Guo Li, Learning knowledge embeddings by combining limit-based scoring loss, in: ACM on CIKM, 2017, pp. 1009–1018.
[107]
Nayyeri Mojtaba, Vahdati Sahar, Lehmann Jens, Yazdi Hamed Shariat, Soft marginal transe for scholarly knowledge graph completion, 2019, arXiv preprint arXiv:1904.12211.
[108]
Xiao Han, Huang Minlie, Hao Yu, Zhu Xiaoyan, TransA: An adaptive approach for knowledge graph embedding, 2015, arXiv preprint arXiv:1509.05490.
[109]
Ebisu Takuma, Ichise Ryutaro, Toruse: Knowledge graph embedding on a lie group, in: AAAI, Vol. 32, 2018.
[110]
Sun Zhiqing, Deng Zhi-Hong, Nie Jian-Yun, Tang Jian, RotatE: Knowledge graph embedding by relational rotation in complex space, in: ICLR, 2018.
[111]
Xie Ruobing, Liu Zhiyuan, Lin Fen, Lin Leyu, Does william shakespeare really write hamlet? knowledge representation learning with confidence, in: AAAI, Vol. 32, 2018.
[112]
Zhang Richong, Li Junpeng, Mei Jiajie, Mao Yongyi, Scalable instance reconstruction in knowledge bases via relatedness affiliated embedding, in: WWW, 2018, pp. 1185–1194.
[113]
Bordes Antoine, Weston Jason, Collobert Ronan, Bengio Yoshua, Learning structured embeddings of knowledge bases, in: AAAI, Vol. 25, 2011.
[114]
Zhang Ziqi, Effective and efficient semantic table interpretation using tableminer+, Semant. Web 8 (6) (2017) 921–957.
[115]
Tang Yun, Huang Jing, Wang Guangtao, He Xiaodong, Zhou Bowen, Orthogonal relation transforms with graph context modeling for knowledge graph embedding, 2019, arXiv preprint arXiv:1911.04910.
[116]
Bansal Nitin, Chen Xiaohan, Wang Zhangyang, Can we gain more from orthogonality regularizations in training deep networks?, Adv. Neural Inf. Process. Syst. 31 (2018) 4261–4271.
[117]
Xiong Shengwu, Huang Weitao, Duan Pengfei, Knowledge graph embedding via relation paths and dynamic mapping matrix, in: International Conference on Conceptual Modeling, Springer, 2018, pp. 106–118.
[118]
Garcia-Duran Alberto, Niepert Mathias, Kblrn: End-to-end learning of knowledge base representations with latent, relational, and numerical features, 2017, arXiv preprint arXiv:1709.04676.
[119]
Yi T., Tuan L.A., Phan M.C., Hui S.C., Multi-task neural network for non-discrete attribute prediction in knowledge graphs, in: CIKM’17, 2017.
[120]
Wu Yanrong, Wang Zhichun, Knowledge graph embedding with numeric attributes of entities, in: Workshop on RepL4NLP, 2018, pp. 132–136.
[121]
Zhong Huaping, Zhang Jianwen, Wang Zhen, Wan Hai, Chen Zheng, Aligning knowledge and text embeddings by entity descriptions, in: EMNLP, 2015, pp. 267–272.
[122]
Xie Ruobing, Liu Zhiyuan, Luan Huanbo, Sun Maosong, Image-embodied knowledge representation learning, 2016, arXiv preprint arXiv:1609.07028.
[123]
Mousselly-Sergieh Hatem, Botschen Teresa, Gurevych Iryna, Roth Stefan, A multimodal translation-based approach for knowledge graph representation learning, in: SEM, 2018, pp. 225–234.
[124]
Pezeshkpour Pouya, Chen Liyan, Singh Sameer, Embedding multimodal relational data for knowledge base completion, in: EMNLP, 2018.
[125]
Liu Ye, Li Hui, Garcia-Duran Alberto, Niepert Mathias, Onoro-Rubio Daniel, Rosenblum David S., MMKG: multi-modal knowledge graphs, in: ESWC, Springer, 2019, pp. 459–474.
[126]
Kristiadi Agustinus, Khan Mohammad Asif, Lukovnikov Denis, Lehmann Jens, Fischer Asja, Incorporating literals into knowledge graph embeddings, in: ISWC, Springer, 2019, pp. 347–363.
[127]
Chang Kai-Wei, Yih Wen-tau, Yang Bishan, Meek Christopher, Typed tensor decomposition of knowledge bases for relation extraction, in: EMNLP, 2014, pp. 1568–1579.
[128]
Krompaß Denis, Baier Stephan, Tresp Volker, Type-constrained representation learning in knowledge graphs, in: ISWC, Springer, 2015, pp. 640–655.
[129]
Ma Shiheng, Ding Jianhui, Jia Weijia, Wang Kun, Guo Minyi, Transt: Type-based multiple embedding representations for knowledge graph completion, in: ECML PKDD, Springer, 2017, pp. 717–733.
[130]
Komninos Alexandros, Manandhar Suresh, Feature-rich networks for knowledge base completion, in: ACL (Volume 2: Short Papers), 2017, pp. 324–329.
[131]
Amador-Domínguez Elvira, Hohenecker Patrick, Lukasiewicz Thomas, Manrique Daniel, Serrano Emilio, An ontology-based deep learning approach for knowledge graph completion with fresh entities, in: DCAI, Springer, 2019, pp. 125–133.
[132]
Hu Zhiting, Huang Poyao, Deng Yuntian, Gao Yingkai, Xing Eric, Entity hierarchy embedding, in: ACL and IJCNLP (Volume 1: Long Papers), 2015, pp. 1292–1300.
[133]
Guo Shu, Wang Quan, Wang Bin, Wang Lihong, Guo Li, Semantically smooth knowledge graph embedding, in: ACL and IJCNLP (Volume 1: Long Papers), 2015, pp. 84–94.
[134]
Ma Jianxin, Cui Peng, Wang Xiao, Zhu Wenwu, Hierarchical taxonomy aware network embedding, in: ACM SIGKDD KDD, 2018, pp. 1920–1929.
[135]
Sedghi Hanie, Sabharwal Ashish, Knowledge completion for generics using guided tensor factorization, Trans. Assoc. Comput. Linguist. 6 (2018) 197–210.
[136]
Fatemi Bahare, Ravanbakhsh Siamak, Poole David, Improved knowledge graph embedding using background taxonomic information, in: AAAI, Vol. 33, 2019, pp. 3526–3533.
[137]
Belkin Mikhail, Niyogi Partha, Laplacian eigenmaps and spectral techniques for embedding and clustering, in: NIPS, Vol. 14, 2001, pp. 585–591.
[138]
Roweis Sam T., Saul Lawrence K., Nonlinear dimensionality reduction by locally linear embedding, Science 290 (5500) (2000) 2323–2326.
[139]
Ji Guoliang, Liu Kang, He Shizhu, Zhao Jun, Knowledge graph completion with adaptive sparse transfer matrix, in: AAAI, Vol. 30, 2016.
[140]
Geng Zhiqiang, Li Zhongkun, Han Yongming, A novel asymmetric embedding model for knowledge graph completion, in: ICPR, IEEE, 2018, pp. 290–295.
[141]
Chen Muhao, Tian Yingtao, Chen Xuelu, Xue Zijun, Zaniolo Carlo, On2vec: Embedding-based relation prediction for ontology population, in: SIAM ICDM, SIAM, 2018, pp. 315–323.
[142]
Takahashi Ryo, Tian Ran, Inui Kentaro, Interpretable and compositional relation learning by joint training with an autoencoder, in: ACL (Volume 1: Long Papers), 2018, pp. 2148–2159.
[143]
Guu Kelvin, Miller John, Liang Percy, Traversing knowledge graphs in vector space, 2015, arXiv preprint arXiv:1506.01094.
[144]
Suzuki Atsushi, Enokida Yosuke, Yamanishi Kenji, Riemannian TransE: Multi-relational graph embedding in non-euclidean space, 2018.
[145]
Zhou Zili, Liu Shaowu, Xu Guandong, Zhang Wu, On completing sparse knowledge base with transitive relation embedding, in: AAAI, Vol. 33, 2019, pp. 3125–3132.
[146]
Tsourakakis Charalampos E., Fast counting of triangles in large real networks without counting: Algorithms and laws, in: ICDM, IEEE, 2008, pp. 608–617.
[147]
Nguyen Dat Quoc, Sirts Kairit, Qu Lizhen, Johnson Mark, Neighborhood mixture model for knowledge base completion, 2016, arXiv preprint arXiv:1606.06461.
[148]
Veličković Petar, Cucurull Guillem, Casanova Arantxa, Romero Adriana, Lio Pietro, Bengio Yoshua, Graph attention networks, 2017, arXiv preprint arXiv:1710.10903.
[149]
Kong Fanshuang, Zhang Richong, Mao Yongyi, Deng Ting, Lena: Locality-expanded neural embedding for knowledge base completion, in: AAAI, Vol. 33, 2019, pp. 2895–2902.
[150]
Bansal Trapit, Juan Da-Cheng, Ravi Sujith, McCallum Andrew, A2n: Attending to neighbors for knowledge graph inference, in: ACL, 2019, pp. 4387–4392.
[151]
Wang Peifeng, Han Jialong, Li Chenliang, Pan Rong, Logic attention based neighborhood aggregation for inductive knowledge graph embedding, in: AAAI, Vol. 33, 2019, pp. 7152–7159.
[152]
Li Weidong, Zhang Xinyu, Wang Yaqian, Yan Zhihuan, Peng Rong, Graph2Seq: Fusion embedding learning for knowledge graph completion, IEEE Access 7 (2019) 157960–157971.
[153]
Zhao Zhang, Fuzhen Zhuang, Hengshu Zhu, Zhiping Shi, Hui Xiong, Qing He, Relational graph neural network with hierarchical attention for knowledge graph completion, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 9612–9619.
[154]
Xiong Wenhan, Yu Mo, Chang Shiyu, Guo Xiaoxiao, Wang William Yang, One-shot relational learning for knowledge graphs, 2018, arXiv preprint arXiv:1808.09040.
[155]
Zhang Jiatao, Wu Tianxing, Qi Guilin, Gaussian metric learning for few-shot uncertain knowledge graph completion, in: International Conference on Database Systems for Advanced Applications, Springer, 2021, pp. 256–271.
[156]
Ferré Sébastien, Link prediction in knowledge graphs with concepts of nearest neighbours, in: ESWC, Springer, 2019, pp. 84–100.
[157]
Borrego Agustín, Ayala Daniel, Hernández Inma, Rivero Carlos R., Ruiz David, CAFE: Knowledge graph completion using neighborhood-aware features, Eng. Appl. Artif. Intell. 103 (2021).
[158]
Sukhbaatar Sainbayar, Szlam Arthur, Weston Jason, Fergus Rob, End-to-end memory networks, 2015, arXiv preprint arXiv:1503.08895.
[159]
Ferré Sébastien, Concepts de plus proches voisins dans des graphes de connaissances, in: 28es Journées Francophones d’Ingénierie des Connaissances IC 2017, 2017, pp. 163–174.
[160]
Denoeux T., A k-nearest neighbor classification rule based on Dempster-Shafer theory, IEEE Trans. Syst. Man Cybern. 25 (5) (1995) 804–813.
[161]
Bordes Antoine, Glorot Xavier, Weston Jason, Bengio Yoshua, Joint learning of words and meaning representations for open-text semantic parsing, in: Artificial Intelligence and Statistics, PMLR, 2012, pp. 127–135.
[162]
Wang Yashen, Liu Yifeng, Zhang Huanhuan, Xie Haiyong, Leveraging lexical semantic information for learning concept-based multiple embedding representations for knowledge graph completion, in: APWeb and WAIM Joint International Conference on Web and Big Data, Springer, 2019, pp. 382–397.
[163]
Yin Wenpeng, Yaghoobzadeh Yadollah, Schütze Hinrich, Recurrent one-hop predictions for reasoning over knowledge graphs, in: COLING, 2018, pp. 2369–2378.
[164]
Lao Ni, Mitchell Tom, Cohen William, Random walk inference and learning in a large scale knowledge base, in: EMNLP, 2011, pp. 529–539.
[165]
Gardner Matt, Mitchell Tom, Efficient and expressive knowledge base completion using subgraph feature extraction, in: EMNLP, 2015, pp. 1488–1498.
[166]
Neelakantan Arvind, Roth Benjamin, McCallum Andrew, Compositional vector space models for knowledge base completion, in: ACL and the IJCNLP (Volume 1: Long Papers), 2015, pp. 156–166.
[167]
Das Rajarshi, Neelakantan Arvind, Belanger David, McCallum Andrew, Chains of reasoning over entities, relations, and text using recurrent neural networks, in: EACL (1), 2017.
[168]
Jiang Xiaotian, Wang Quan, Qi Baoyuan, Qiu Yongqin, Li Peng, Wang Bin, Attentive path combination for knowledge graph completion, in: ACML, PMLR, 2017, pp. 590–605.
[169]
Shen Yelong, Huang Po-Sen, Chang Ming-Wei, Gao Jianfeng, Modeling large-scale structured relationships with shared memory for knowledge base completion, in: Workshop on Representation Learning for NLP, 2017, pp. 57–68.
[170]
Lei Kai, Zhang Jin, Xie Yuexiang, Wen Desi, Chen Daoyuan, Yang Min, Shen Ying, Path-based reasoning with constrained type attention for knowledge graph completion, Neural Comput. Appl. (2019) 1–10.
[171]
Toutanova Kristina, Lin Xi Victoria, Yih Wen-tau, Poon Hoifung, Quirk Chris, Compositional learning of embeddings for relation paths in knowledge base and text, in: ACL (Volume 1: Long Papers), 2016, pp. 1434–1444.
[172]
Lin Xixun, Liang Yanchun, Giunchiglia Fausto, Feng Xiaoyue, Guan Renchu, Relation path embedding in knowledge graphs, Neural Comput. Appl. 31 (9) (2019) 5629–5639.
[173]
Nastase Vivi, Kotnis Bhushan, Abstract graphs and abstract paths for knowledge graph completion, in: SEM, 2019, pp. 147–157.
[174]
Zhu Yao, Liu Hongzhi, Wu Zhonghai, Song Yang, Zhang Tao, Representation learning with ordered relation paths for knowledge graph completion, 2019, arXiv preprint arXiv:1909.11864.
[175]
Jagvaral Batselem, Lee Wan-Kon, Roh Jae-Seung, Kim Min-Sung, Park Young-Tack, Path-based reasoning approach for knowledge graph completion using CNN-BiLSTM with attention mechanism, Expert Syst. Appl. 142 (2020).
[176]
Zhou Tao, Ren Jie, Medo Matúš, Zhang Yi-Cheng, Bipartite network projection and personal recommendation, Phys. Rev. E 76 (4) (2007).
[177]
Gardner Matt, Talukdar Partha, Kisiel Bryan, Mitchell Tom, Improving learning and inference in a large knowledge-base using latent syntactic cues, in: EMNLP, 2013, pp. 833–838.
[178]
Gardner Matt, Talukdar Partha, Krishnamurthy Jayant, Mitchell Tom, Incorporating vector space similarity in random walk inference over knowledge bases, in: EMNLP, 2014, pp. 397–406.
[179]
Werbos Paul J., Backpropagation through time: what it does and how to do it, Proc. IEEE 78 (10) (1990) 1550–1560.
[180]
Cho Kyunghyun, van Merrienboer Bart, Gülçehre Çaglar, Bahdanau Dzmitry, Bougares Fethi, Schwenk Holger, Bengio Yoshua, Learning phrase representations using RNN encoder-decoder for statistical machine translation, in: EMNLP, 2014.
[181]
Dave Orr, Amar Subramanya, Evgeniy Gabrilovich, Michael Ringgaard, billion clues in 800 million documents: A web research corpus annotated with freebase concepts. Google Research Blog, 11.
[182]
Yaghoobzadeh Yadollah, Schütze Hinrich, Corpus-level fine-grained entity typing using contextual information, 2016, arXiv preprint arXiv:1606.07901.
[183]
Vaswani Ashish, Shazeer Noam, Parmar Niki, Uszkoreit Jakob, Jones Llion, Gomez Aidan N., Kaiser Lukasz, Polosukhin Illia, Attention is all you need, in: NIPS, 2017.
[184]
Sadeghian Ali, Armandpour Mohammadreza, Ding Patrick, Wang Daisy Zhe, Drum: End-to-end differentiable rule mining on knowledge graphs, 2019, arXiv preprint arXiv:1911.00055.
[185]
Wang Quan, Wang Bin, Guo Li, Knowledge base completion using embeddings and rules, in: IJCAI, 2015.
[186]
Jiang Shangpu, Lowd Daniel, Dou Dejing, Learning to refine an automatically extracted knowledge base using markov logic, in: ICDM, IEEE, 2012, pp. 912–917.
[187]
Pujara Jay, Miao Hui, Getoor Lise, Cohen William W., Ontology-aware partitioning for knowledge graph identification, in: AKBC Workshop, 2013, pp. 19–24.
[188]
Sourek Gustav, Aschenbrenner Vojtech, Zelezny Filip, Schockaert Steven, Kuzelka Ondrej, Lifted relational neural networks: Efficient learning of latent relational structures, J. Artificial Intelligence Res. 62 (2018) 69–100.
[189]
Kuželka Ondřej, Davis Jesse, Markov logic networks for knowledge base completion: A theoretical analysis under the MCAR assumption, in: UAI, PMLR, 2020, pp. 1138–1148.
[190]
Zhang Yuyu, Chen Xinshi, Yang Yuan, Ramamurthy Arun, Li Bo, Qi Yuan, Song Le, Efficient probabilistic logic reasoning with graph neural networks, 2020, arXiv preprint arXiv:2001.11850.
[191]
Yang Fan, Yang Zhilin, Cohen William W., Differentiable learning of logical rules for knowledge base reasoning, 2017, arXiv preprint arXiv:1702.08367.
[192]
Omran Pouya Ghiasnezhad, Wang Kewen, Wang Zhe, Scalable rule learning via learning representation, in: IJCAI, 2018, pp. 2149–2155.
[193]
Rocktäschel Tim, Deep prolog: End-to-end differentiable proving in knowledge bases, in: AITP 2017, 2017, p. 9.
[194]
Minervini Pasquale, Bosnjak Matko, Rocktäschel Tim, Riedel Sebastian, Towards neural theorem proving at scale, 2018, arXiv preprint arXiv:1807.08204.
[195]
Wei Zhuoyu, Zhao Jun, Liu Kang, Qi Zhenyu, Sun Zhengya, Tian Guanhua, Large-scale knowledge base completion: Inferring via grounding network sampling over selected instances, in: CIKM, 2015, pp. 1331–1340.
[196]
Wang William Yang, Cohen William W., Learning first-order logic embeddings via matrix factorization, in: IJCAI, 2016, pp. 2132–2138.
[197]
Guo Shu, Wang Quan, Wang Lihong, Wang Bin, Guo Li, Jointly embedding knowledge graphs and logical rules, in: EMNLP, 2016, pp. 192–202.
[198]
Wang Pengwei, Dou Dejing, Wu Fangzhao, de Silva Nisansa, Jin Lianwen, Logic rules powered knowledge graph embedding, 2019, arXiv preprint arXiv:1903.03772.
[199]
Guo Shu, Wang Quan, Wang Lihong, Wang Bin, Guo Li, Knowledge graph embedding with iterative guidance from soft rules, in: AAAI, Vol. 32, 2018.
[200]
Ho Vinh Thinh, Stepanova Daria, Gad-Elrab Mohamed Hassan, Kharlamov Evgeny, Weikum Gerhard, Learning rules from incomplete kgs using embeddings, in: ISWC, ceur. ws. org, 2018.
[201]
Zhang Wen, Paudel Bibek, Wang Liang, Chen Jiaoyan, Zhu Hai, Zhang Wei, Bernstein Abraham, Chen Huajun, Iteratively learning embeddings and rules for knowledge graph reasoning, in: WWW, 2019, pp. 2366–2377.
[202]
Qu Meng, Tang Jian, Probabilistic logic neural networks for reasoning, 2019, arXiv preprint arXiv:1906.08495.
[203]
Du Jianfeng, Pan Jeff Z., Wang Sylvia, Qi Kunxun, Shen Yuming, Deng Yu, Validation of growing knowledge graphs by abductive text evidences, in: AAAI, Vol. 33, 2019, pp. 2784–2791.
[204]
Meilicke Christian, Chekol Melisachew Wudage, Ruffinelli Daniel, Stuckenschmidt Heiner, Anytime bottom-up rule learning for knowledge graph completion, in: IJCAI, 2019, pp. 3137–3143.
[205]
Ma Jiangtao, Qiao Yaqiong, Hu Guangwu, Wang Yanjun, Zhang Chaoqin, Huang Yongzhong, Sangaiah Arun Kumar, Wu Huaiguang, Zhang Hongpo, Ren Kai, ELPKG: A high-accuracy link prediction approach for knowledge graph completion, Symmetry 11 (9) (2019) 1096.
[206]
Niu Guanglin, Zhang Yongfei, Li Bo, Cui Peng, Liu Si, Li Jingyang, Zhang Xiaowei, Rule-guided compositional representation learning on knowledge graphs, in: AAAI, Vol. 34, 2020, pp. 2950–2958.
[207]
Galárraga Luis, Teflioudi Christina, Hose Katja, Suchanek Fabian M., Fast rule mining in ontological knowledge bases with AMIE +, VLDB J. 24 (6) (2015) 707–730.
[208]
Meilicke Christian, Fink Manuel, Wang Yanjie, Ruffinelli Daniel, Gemulla Rainer, Stuckenschmidt Heiner, Fine-grained evaluation of rule-and embedding-based systems for knowledge graph completion, in: ISWC, Springer, 2018, pp. 3–20.
[209]
Chen Yang, Goldberg Sean, Wang Daisy Zhe, Johri Soumitra Siddharth, Ontological pathfinding, in: International Conference on Management of Data, 2016, pp. 835–846.
[210]
Rocktäschel Tim, Bosnjak Matko, Singh Sameer, Riedel Sebastian, Low-dimensional embeddings of logic, in: ACL 2014 Workshop on Semantic Parsing, 2014, pp. 45–49.
[211]
Rocktäschel Tim, Singh Sameer, Riedel Sebastian, Injecting logical background knowledge into embeddings for relation extraction, in: NAACL: Human Language Technologies, 2015, pp. 1119–1129.
[212]
Muggleton Stephen, et al., Stochastic logic programs, in: Advances in Inductive Logic Programming, Vol. 32, Citeseer, 1996, pp. 254–264.
[213]
Muggleton Stephen, Inductive Logic Programming, Vol. 38, Morgan Kaufmann, 1992.
[214]
Koller Daphne, Friedman Nir, Džeroski Sašo, Sutton Charles, McCallum Andrew, Pfeffer Avi, Abbeel Pieter, Wong Ming-Fai, Meek Chris, Neville Jennifer, et al., Introduction to Statistical Relational Learning, MIT Press, 2007.
[215]
Richardson Matthew, Domingos Pedro, Markov logic networks, Mach. Learn. 62 (1–2) (2006) 107–136.
[216]
Wang William Yang, Mazaitis Kathryn, Cohen William W., Programming with personalized pagerank: a locally groundable first-order probabilistic logic, in: CIKM, 2013, pp. 2129–2138.
[217]
Neelakantan Arvind, Le Quoc V., Abadi Martin, McCallum Andrew, Amodei Dario, Learning a natural language interface with neural programmer, 2016, arXiv preprint arXiv:1611.08945.
[218]
Neelakantan Arvind, Le Quoc V., Sutskever Ilya, Neural programmer: Inducing latent programs with gradient descent, 2015, arXiv preprint arXiv:1511.04834.
[219]
Andreas Jacob, Rohrbach Marcus, Darrell Trevor, Klein Dan, Learning to compose neural networks for question answering, 2016, arXiv preprint arXiv:1601.01705.
[220]
Graves Alex, Wayne Greg, Reynolds Malcolm, Harley Tim, Danihelka Ivo, Grabska-Barwińska Agnieszka, Colmenarejo Sergio Gómez, Grefenstette Edward, Ramalho Tiago, Agapiou John, et al., Hybrid computing using a neural network with dynamic external memory, Nature 538 (7626) (2016) 471–476.
[221]
Cohen William W., Tensorlog: A differentiable deductive database, 2016, arXiv preprint arXiv:1605.06523.
[222]
Boytsov Leonid, Naidan Bilegsaikhan, Engineering efficient and effective non-metric space library, in: SISAP, Springer, 2013, pp. 280–293.
[223]
Malkov Yu A., Yashunin Dmitry A., Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs, PAMI 42 (4) (2018) 824–836.
[224]
Evans Richard, Grefenstette Edward, Learning explanatory rules from noisy data, J. Artificial Intelligence Res. 61 (2018) 1–64.
[225]
Bouchard Guillaume, Singh Sameer, Trouillon Theo, On approximate reasoning capabilities of low-rank vector spaces, in: AAAI Spring Symposia, Citeseer, 2015.
[226]
Shi Baoxu, Weninger Tim, ProjE: Embedding projection for knowledge graph completion, in: AAAI, Vol. 31, 2017.
[227]
Xiao Han, Huang Minlie, Meng Lian, Zhu Xiaoyan, SSP: semantic space projection for knowledge graph embedding with text descriptions, in: AAAI, Vol. 31, 2017.
[228]
Han Xu, Liu Zhiyuan, Sun Maosong, Neural knowledge acquisition via mutual attention between knowledge graph and text, in: AAAI, Vol. 32, 2018.
[229]
Rosso Paolo, Yang Dingqi, Cudré-Mauroux Philippe, Revisiting text and knowledge graph joint embeddings: The amount of shared information matters!, in: 2019 IEEE Big Data, IEEE, 2019, pp. 2465–2473.
[230]
An Bo, Chen Bo, Han Xianpei, Sun Le, Accurate text-enhanced knowledge graph representation learning, in: NAACL: Human Language Technologies, Volume 1 (Long Papers), 2018, pp. 745–755.
[231]
Long Teng, Lowe Ryan, Cheung Jackie Chi Kit, Precup Doina, Leveraging lexical resources for learning entity embeddings in multi-relational data, in: ACL (2), 2016.
[232]
Fan Miao, Zhou Qiang, Zheng Thomas Fang, Grishman Ralph, Distributed representation learning for knowledge graphs with entity descriptions, Pattern Recognit. Lett. 93 (2017) 31–37.
[233]
Xu Jiacheng, Qiu Xipeng, Chen Kan, Huang Xuanjing, Knowledge graph representation with jointly structural and textual encoding, in: IJCAI, 2017.
[234]
Cochez Michael, Garofalo Martina, Lenßen Jérôme, Pellegrino Maria Angela, A first experiment on including text literals in KGloVe, 2018, arXiv preprint arXiv:1807.11761.
[235]
Mimouni Nada, Moissinac Jean-Claude, Vu Anh, Knowledge base completion with analogical inference on context graphs, in: Semapro 2019, 2019.
[236]
Yao Liang, Mao Chengsheng, Luo Yuan, KG-BERT: BERT for knowledge graph completion, 2019, arXiv preprint arXiv:1909.03193.
[237]
Wang Xiaozhi, Gao Tianyu, Zhu Zhaocheng, Liu Zhiyuan, Li Juanzi, Tang Jian, KEPLER: A unified model for knowledge embedding and pre-trained language representation, 2019, arXiv preprint arXiv:1911.06136.
[238]
Liu Yinhan, Ott Myle, Goyal Naman, Du Jingfei, Joshi Mandar, Chen Danqi, Levy Omer, Lewis Mike, Zettlemoyer Luke, Stoyanov Veselin, Roberta: A robustly optimized bert pretraining approach, 2019, arXiv preprint arXiv:1907.11692.
[239]
Daniel Daza, Michael Cochez, Paul Groth, Inductive entity representations from text via link prediction, in: Proceedings of the Web Conference 2021, 2021, pp. 798–808.
[240]
Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou, Ying Wang, Yi Chang, Structure-augmented text representation learning for efficient knowledge graph completion, in: Proceedings of the Web Conference 2021, 2021, pp. 1737–1748.
[241]
Peters Matthew E., Neumann Mark, Iyyer Mohit, Gardner Matt, Clark Christopher, Lee Kenton, Zettlemoyer Luke, Deep contextualized word representations, 2018, arXiv preprint arXiv:1802.05365.
[242]
Radford Alec, Narasimhan Karthik, Salimans Tim, Sutskever Ilya, Improving language understanding by generative pre-training, 2018.
[243]
Devlin Jacob, Chang Ming-Wei, Lee Kenton, Toutanova Kristina, Bert: Pre-training of deep bidirectional transformers for language understanding, 2018, arXiv preprint arXiv:1810.04805.
[244]
Yang Zhilin, Dai Zihang, Yang Yiming, Carbonell Jaime, Salakhutdinov Ruslan, Le Quoc V., Xlnet: Generalized autoregressive pretraining for language understanding, 2019, arXiv preprint arXiv:1906.08237.
[245]
Mikolov Tomas, Sutskever Ilya, Chen Kai, Corrado Greg, Dean Jeffrey, Distributed representations of words and phrases and their compositionality, 2013, arXiv preprint arXiv:1310.4546.
[246]
Vaswani Ashish, Shazeer Noam, Parmar Niki, Uszkoreit Jakob, Jones Llion, Gomez Aidan N., Kaiser Lukasz, Polosukhin Illia, Attention is all you need, 2017, arXiv preprint arXiv:1706.03762.
[247]
Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, Qun Liu, ERNIE: Enhanced language representation with informative entities, in: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019, pp. 1441–1451.
[248]
Tianxiang Sun, Yunfan Shao, Xipeng Qiu, Qipeng Guo, Yaru Hu, Xuan-Jing Huang, Zheng Zhang, CoLAKE: Contextualized language and knowledge embedding, in: Proceedings of the 28th International Conference on Computational Linguistics, 2020, pp. 3660–3670.
[249]
Boran Hao, Henghui Zhu, Ioannis Paschalidis, Enhancing clinical bert embedding using a biomedical knowledge base, in: Proceedings of the 28th International Conference on Computational Linguistics, 2020, pp. 657–661.
[250]
Logan Robert, Liu Nelson F., Peters Matthew E., Gardner Matt, Singh Sameer, Barack’s wife hillary: Using knowledge graphs for fact-aware language modeling, in: ACL, 2019, pp. 5962–5971.
[251]
Peters Matthew E., Neumann Mark, Logan Robert, Schwartz Roy, Joshi Vidur, Singh Sameer, Smith Noah A., Knowledge enhanced contextual word representations, in: EMNLP-IJCNLP, 2019, pp. 43–54.
[252]
Jiang Tingsong, Liu Tianyu, Ge Tao, Sha Lei, Li Sujian, Chang Baobao, Sui Zhifang, Encoding temporal information for time-aware link prediction, in: EMNLP, 2016, pp. 2350–2354.
[253]
Goel Rishab, Kazemi Seyed Mehran, Brubaker Marcus, Poupart Pascal, Diachronic embedding for temporal knowledge graph completion, in: AAAI, Vol. 34, 2020, pp. 3988–3995.
[254]
Xu Chenjin, Nayyeri Mojtaba, Alkhoury Fouad, Yazdi Hamed, Lehmann Jens, Temporal knowledge graph completion based on time series Gaussian embedding, in: ISWC, Springer, 2020, pp. 654–671.
[255]
Leblay Julien, Chekol Melisachew Wudage, Deriving validity time in knowledge graph, in: Companion Proceedings of the the Web Conference 2018, 2018, pp. 1771–1776.
[256]
Dasgupta Shib Sankar, Ray Swayambhu Nath, Talukdar Partha, Hyte: Hyperplane-based temporally aware knowledge graph embedding, in: EMNLP, 2018, pp. 2001–2011.
[257]
Ma Yunpu, Tresp Volker, Daxberger Erik A., Embedding models for episodic knowledge graphs, J. Web Semant. 59 (2019).
[258]
García-Durán Alberto, Dumančić Sebastijan, Niepert Mathias, Learning sequence encoders for temporal knowledge graph completion, 2018, arXiv preprint arXiv:1809.03202.
[259]
Lacroix Timothée, Obozinski Guillaume, Usunier Nicolas, Tensor decompositions for temporal knowledge base completion, 2020, arXiv preprint arXiv:2004.04926.
[260]
Trivedi Rakshit, Dai Hanjun, Wang Yichen, Song Le, Know-evolve: Deep temporal reasoning for dynamic knowledge graphs, in: ICML, PMLR, 2017, pp. 3462–3471.
[261]
Jin Woojeong, Jiang He, Qu Meng, Chen Tong, Zhang Changlin, Szekely Pedro, Ren Xiang, Recurrent event network: Global structure inference over temporal knowledge graph, 2019, arXiv preprint arXiv:1904.05530.
[262]
Han Zhen, Wang Yuyi, Ma Yunpu, Guünnemann Stephan, Tresp Volker, The graph hawkes network for reasoning on temporal knowledge graphs, 2020, arXiv preprint arXiv:2003.13432.
[263]
Wu Jiapeng, Cao Meng, Cheung Jackie Chi Kit, Hamilton William L, TeMP Temporal Message Passing for Temporal Knowledge Graph Completion, 2020, arXiv preprint arXiv:2010.03526.
[264]
Ward Michael D, Beger Andreas, Cutler Josh, Dickenson Matthew, Dorff Cassy, Radford Ben, Comparing GDELT and ICEWS event data, Analysis 21 (1) (2013) 267–297.
[265]
Schein Aaron, Paisley John, Blei David M., Wallach Hanna, Bayesian poisson tensor factorization for inferring multilateral relations from sparse dyadic event counts, in: ACM SIGKDD KDD, 2015, pp. 1045–1054.
[266]
Hoffart Johannes, Suchanek Fabian M, Berberich Klaus, Weikum Gerhard, YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia, Artificial Intelligence 194 (2013) 28–61.
[267]
Mahdisoltani Farzaneh, Biega Joanna, Suchanek Fabian, Yago3: A knowledge base from multilingual wikipedias, in: CIDR, CIDR Conference, 2014.
[268]
Saito Itsumi, Nishida Kyosuke, Asano Hisako, Tomita Junji, Commonsense knowledge base completion and generation, in: CoNLL, 2018, pp. 141–150.
[269]
Antol Stanislaw, Agrawal Aishwarya, Lu Jiasen, Mitchell Margaret, Batra Dhruv, Zitnick C. Lawrence, Parikh Devi, Vqa: Visual question answering, in: ICCV, 2015, pp. 2425–2433.
[270]
Karpathy Andrej, Fei-Fei Li, Deep visual-semantic alignments for generating image descriptions, in: CVPR, 2015, pp. 3128–3137.
[271]
Shuster Kurt, Humeau Samuel, Hu Hexiang, Bordes Antoine, Weston Jason, Engaging image captioning via personality, in: IEEE/CVF CVPR, 2019, pp. 12516–12526.
[272]
Rajani Nazneen Fatema, McCann Bryan, Xiong Caiming, Socher Richard, Explain yourself! leveraging language models for commonsense reasoning, 2019, arXiv preprint arXiv:1906.02361.
[273]
Yang Pengcheng, Li Lei, Luo Fuli, Liu Tianyu, Sun Xu, Enhancing topic-to-essay generation with external commonsense knowledge, in: ACL, 2019, pp. 2002–2012.
[274]
Young Tom, Cambria Erik, Chaturvedi Iti, Zhou Hao, Biswas Subham, Huang Minlie, Augmenting end-to-end dialogue systems with commonsense knowledge, in: AAAI, Vol. 32, 2018.
[275]
Li Xiang, Taheri Aynaz, Tu Lifu, Gimpel Kevin, Commonsense knowledge base completion, in: ACL (Volume 1: Long Papers), 2016, pp. 1445–1455.
[276]
Bosselut Antoine, Rashkin Hannah, Sap Maarten, Malaviya Chaitanya, Celikyilmaz Asli, Choi Yejin, Comet: Commonsense transformers for automatic knowledge graph construction, 2019, arXiv preprint arXiv:1906.05317.
[277]
Malaviya Chaitanya, Bhagavatula Chandra, Bosselut Antoine, Choi Yejin, Commonsense knowledge base completion with structural and semantic context, in: AAAI, Vol. 34, 2020, pp. 2925–2933.
[278]
Chen Xuelu, Chen Muhao, Shi Weijia, Sun Yizhou, Zaniolo Carlo, Embedding uncertain knowledge graphs, in: AAAI, Vol. 33, 2019, pp. 3363–3370.
[279]
Chalier Yohan, Razniewski Simon, Weikum Gerhard, Joint reasoning for multi-faceted commonsense knowledge, 2020, arXiv preprint arXiv:2001.04170.
[280]
Wu Wentao, Li Hongsong, Wang Haixun, Zhu Kenny Q., Probase: A probabilistic taxonomy for text understanding, in: ACM SIGMOD International Conference on Management of Data, 2012, pp. 481–492.
[281]
Speer Robyn, Chin Joshua, Havasi Catherine, Conceptnet 5.5: An open multilingual graph of general knowledge, in: AAAI, Vol. 31, 2017.
[282]
Mitchell Tom, Cohen William, Hruschka Estevam, Talukdar Partha, Yang Bishan, Betteridge Justin, Carlson Andrew, Dalvi Bhanava, Gardner Matt, Kisiel Bryan, et al., Never-ending learning, Commun. ACM 61 (5) (2018) 103–115.
[283]
Sap Maarten, Le Bras Ronan, Allaway Emily, Bhagavatula Chandra, Lourie Nicholas, Rashkin Hannah, Roof Brendan, Smith Noah A, Choi Yejin, Atomic: An atlas of machine commonsense for if-then reasoning, in: AAAI, Vol. 33, 2019, pp. 3027–3035.
[284]
Speer Robert, Havasi Catherine, ConceptNet 5: A large semantic network for relational knowledge, in: The People’s Web Meets NLP, Springer, 2013, pp. 161–176.
[285]
Stanislaw Jastrzebski, Bahdanau Dzmitry, Hosseini Seyedarian, Noukhovitch Michael, Bengio Yoshua, Cheung Jackie Chi Kit, Commonsense mining as knowledge base completion? A study on the impact of novelty, 2018, arXiv preprint arXiv:1804.09259.
[286]
Liu Hugo, Singh Push, ConceptNet—a practical commonsense reasoning tool-kit, BT Technol. J. 22 (4) (2004) 211–226.
[287]
Szklarczyk Damian, Morris John H., Cook Helen, Kuhn Michael, Wyder Stefan, Simonovic Milan, Santos Alberto, Doncheva Nadezhda T., Roth Alexander, Bork Peer, et al., The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible, Nucleic Acids Res. (2016) gkw937.
[288]
Singh Push, Lin Thomas, Mueller Erik T., Lim Grace, Perkins Travell, Zhu Wan Li, Open mind common sense: Knowledge acquisition from the general public, in: OTM Confederated International Conferences” on the Move to Meaningful Internet Systems”, Springer, 2002, pp. 1223–1237.
[289]
Angeli Gabor, Manning Christopher D., Philosophers are mortal: Inferring the truth of unseen facts, in: CoNLL, 2013, pp. 133–142.
[290]
Gordon Jonathan, Van Durme Benjamin, Reporting bias and knowledge acquisition, in: Workshop on AKBC, 2013, pp. 25–30.
[291]
Wen Jianfeng, Li Jianxin, Mao Yongyi, Chen Shini, Zhang Richong, On the representation and embedding of knowledge bases beyond binary relations, in: IJCAI, 2016, pp. 1300–1307.
[292]
Guan Saiping, Jin Xiaolong, Wang Yuanzhuo, Cheng Xueqi, Link prediction on n-ary relational data, in: WWW, 2019, pp. 583–593.
[293]
Faloutsos Michalis, Faloutsos Petros, Faloutsos Christos, On power-law relationships of the internet topology, in: The Structure and Dynamics of Networks, Princeton University Press, 2011, pp. 195–206.
[294]
Steyvers Mark, Tenenbaum Joshua B., The large-scale structure of semantic networks: Statistical analyses and a model of semantic growth, Cogn. Sci. 29 (1) (2005) 41–78.
[295]
Kolyvakis Prodromos, Kalousis Alexandros, Kiritsis Dimitris, Hyperkg: Hyperbolic knowledge graph embeddings for knowledge base completion, 2019, arXiv preprint arXiv:1908.04895.
[296]
Nickel Maximillian, Kiela Douwe, Learning continuous hierarchies in the lorentz model of hyperbolic geometry, in: ICML, PMLR, 2018, pp. 3779–3788.
[297]
Ganea Octavian, Bécigneul Gary, Hofmann Thomas, Hyperbolic entailment cones for learning hierarchical embeddings, in: ICML, PMLR, 2018, pp. 1646–1655.
[298]
Sala Frederic, De Sa Chris, Gu Albert, Ré Christopher, Representation tradeoffs for hyperbolic embeddings, in: ICML, PMLR, 2018, pp. 4460–4469.
[299]
Marc’Aurelio Ranzato Sumit Chopra, Auli Michael, Zaremba Wojciech, Sequence level training with recurrent neural networks, 2015, CoRR abs/1511.06732.
[300]
Paulus Romain, Xiong Caiming, Socher Richard, A deep reinforced model for abstractive summarization, 2017, arXiv preprint arXiv:1705.04304.
[301]
Guu Kelvin, Pasupat Panupong, Liu Evan Zheran, Liang Percy, From language to programs: Bridging reinforcement learning and maximum marginal likelihood, 2017, arXiv preprint arXiv:1704.07926.
[302]
Lin Peng, Song Qi, Wu Yinghui, Fact checking in knowledge graphs with ontological subgraph patterns, Data Sci. Eng. 3 (4) (2018) 341–358.
[303]
Xiong Wenhan, Hoang Thien, Wang William Yang, Deeppath: A reinforcement learning method for knowledge graph reasoning, 2017, arXiv preprint arXiv:1707.06690.
[304]
Shen Yelong, Chen Jianshu, Huang Po-Sen, Guo Yuqing, Gao Jianfeng, Reinforcewalk: Learning to walk in graph with monte carlo tree search, 2018.
[305]
Caruana Rich, Multitask learning, Mach. Learn. 28 (1) (1997) 41–75.

Cited By

View all

Index Terms

  1. A comprehensive overview of knowledge graph completion
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Knowledge-Based Systems
      Knowledge-Based Systems  Volume 255, Issue C
      Nov 2022
      756 pages

      Publisher

      Elsevier Science Publishers B. V.

      Netherlands

      Publication History

      Published: 14 November 2022

      Author Tags

      1. Knowledge Graph Completion (KGC)
      2. Classification
      3. Comparisons and analyses
      4. Performance evaluation
      5. Overview

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 20 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media