skip to main content
article

Preprocessing subgraph and minor problems: When does a small vertex cover help?

Published: 01 March 2014 Publication History

Abstract

We prove a number of results around kernelization of problems parameterized by the size of a given vertex cover of the input graph. We provide three sets of simple general conditions characterizing problems admitting kernels of polynomial size. Our characterizations not only give generic explanations for the existence of many known polynomial kernels for problems like q-Coloring, Odd Cycle Transversal, Chordal Deletion, @h-Transversal, or Long Path, parameterized by the size of a vertex cover, but also imply new polynomial kernels for problems like F-Minor-Free Deletion, which is to delete at most k vertices to obtain a graph with no minor from a fixed finite set F. While our characterization captures many interesting problems, the kernelization complexity landscape of parameterizations by vertex cover is much more involved. We demonstrate this by several results about induced subgraph and minor containment testing.

References

[1]
Alon, N., Gutin, G., Kim, E.J., Szeider, S. and Yeo, A., Solving MAX-r-SAT above a tight lower bound. Algorithmica. v61 i3. 638-655.
[2]
Berge, C., Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind. Wiss. Z., Martin-Luther-Univ. Halle-Wittenb., Math.-Nat.wiss. Reihe. v10. 114
[3]
Binkele-Raible, D., Fernau, H., Fomin, F.V., Lokshtanov, D., Saurabh, S. and Villanger, Y., Kernel(s) for problems with no kernel: On out-trees with many leaves. ACM Trans. Algorithms. v8 i4. 38
[4]
A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. v209 i1-2. 1-45.
[5]
Bodlaender, H.L., Kernelization: New upper and lower bound techniques. In: Proc. 4th IWPEC, pp. 17-37.
[6]
Bodlaender, H.L., Downey, R.G., Fellows, M.R. and Hermelin, D., On problems without polynomial kernels. J. Comput. Syst. Sci. v75 i8. 423-434.
[7]
Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S. and Thilikos, D.M., (Meta) kernelization. In: Proc. 50th FOCS, pp. 629-638.
[8]
Bodlaender, H.L., Jansen, B.M.P. and Kratsch, S., Cross-composition: A new technique for kernelization lower bounds. In: Proc. 28th STACS, pp. 165-176.
[9]
Bodlaender, H.L., Jansen, B.M.P. and Kratsch, S., Preprocessing for treewidth: A combinatorial analysis through kernelization. In: Proc. 38th ICALP, pp. 437-448.
[10]
Bodlaender, H.L., Jansen, B.M.P. and Kratsch, S., Kernel bounds for path and cycle problems. Theor. Comput. Sci.
[11]
Bodlaender, H.L., Jansen, B.M.P. and Kratsch, S., Kernel bounds for structural parameterizations of pathwidth. In: Proc. 13th SWAT, pp. 352-363.
[12]
Bodlaender, H.L. and Koster, A.M.C.A., Combinatorial optimization on graphs of bounded treewidth. Comput. J. v51 i3. 255-269.
[13]
Bodlaender, H.L., Thomassé, S. and Yeo, A., Kernel bounds for disjoint cycles and disjoint paths. Theor. Comput. Sci. v412 i35. 4570-4578.
[14]
Brandstädt, A., Le, V.B. and Spinrad, J.P., Graph Classes: A Survey. 1999. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
[15]
Cameron, K., Induced matchings. Discrete Appl. Math. v24 i1-3. 97-102.
[16]
Chudnovsky, M., Robertson, N., Seymour, P.D. and Thomas, R., The strong perfect graph theorem. Ann. Math. v164. 51-229.
[17]
Courcelle, B., The monadic second-order logic of graphs I: Recognizable sets of finite graphs. Inf. Comput. v85 i1. 12-75.
[18]
Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M. and Saurabh, S., On cutwidth parameterized by vertex cover. In: Proc. 6th IPEC, pp. 246-258.
[19]
Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M. and Saurabh, S., On the hardness of losing width. In: Proc. 6th IPEC, pp. 159-168.
[20]
Dell, H. and van Melkebeek, D., Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. In: Proc. 42nd STOC, pp. 251-260.
[21]
Diestel, R., Graph Theory. 2010. 4th edition. Springer-Verlag, Heidelberg.
[22]
Dom, M., Lokshtanov, D. and Saurabh, S., Incompressibility through colors and IDs. In: Proc. 36th ICALP, pp. 378-389.
[23]
Downey, R. and Fellows, M.R., Parameterized Complexity. 1999. Monogr. Comput. Sci., 1999.Springer-Verlag, New York.
[24]
Fellows, M.R., Hermelin, D. and Rosamond, F.A., Well quasi orders in subclasses of bounded treewidth graphs and their algorithmic applications. Algorithmica. v64. 3-18.
[25]
Fellows, M.R., Jansen, B.M.P. and Rosamond, F.A., Towards fully multivariate algorithmics: Parameter ecology and the deconstruction of computational complexity. Eur. J. Comb. v34 i3. 541-566.
[26]
Flum, J. and Grohe, M., Parameterized Complexity Theory. 2006. Springer-Verlag, New York.
[27]
Fomin, F., Lokshtanov, D., Saurabh, S. and Thilikos, D.M., Bidimensionality and kernels. In: Proc. 21st SODA, pp. 503-510.
[28]
Fortnow, L. and Santhanam, R., Infeasibility of instance compression and succinct PCPs for NP. J. Comput. Syst. Sci. v77 i1. 91-106.
[29]
Ganian, R., Twin-cover: Beyond vertex cover in parameterized algorithmics. In: Proc. 6th IPEC, pp. 259-271.
[30]
Garey, M.R. and Johnson, D.S., Computers and Intractability, A Guide to the Theory of NP-Completeness. 1979. W.H. Freeman and Company, New York.
[31]
Logic, graphs, and algorithms. In: Flum, J., Grädel, E., Wilke, T. (Eds.), Logic and Automata: History and Perspectives, Amsterdam University Press. pp. 357-422.
[32]
Guo, J. and Niedermeier, R., Invitation to data reduction and problem kernelization. SIGACT News. v38 i1. 31-45.
[33]
On the compressibility of NP instances and cryptographic applications. SIAM J. Comput. v39 i5. 1667-1713.
[34]
arXiv:1110.0976
[35]
Jansen, B.M.P. and Bodlaender, H.L., Vertex cover kernelization revisited: Upper and lower bounds for a refined parameter. In: Proc. 28th STACS, pp. 177-188.
[36]
Jansen, B.M.P. and Kratsch, S., Data reduction for graph coloring problems. In: Proc. 18th FCT, pp. 90-101.
[37]
Jansen, B.M.P. and Kratsch, S., On polynomial kernels for structural parameterizations of odd cycle transversal. In: Proc. 6th IPEC, pp. 132-144.
[38]
Kratsch, S. and Wahlström, M., Compression via matroids: a randomized polynomial kernel for odd cycle transversal. In: Proc. 23rd SODA, pp. 94-103.
[39]
Lampis, M., Algorithmic meta-theorems for restrictions of treewidth. Algorithmica. 1-19.
[40]
Niedermeier, R., Invitation to Fixed-Parameter Algorithms. 2006. Oxford University Press.
[41]
Niedermeier, R., Reflections on multivariate algorithmics and problem parameterization. In: Proc. 27th STACS, pp. 17-32.
[42]
Robertson, N. and Seymour, P.D., Graph minors. XX. Wagner's conjecture. J. Comb. Theory, Ser. B. v92 i2. 325-357.

Cited By

View all
  1. Preprocessing subgraph and minor problems: When does a small vertex cover help?

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Journal of Computer and System Sciences
      Journal of Computer and System Sciences  Volume 80, Issue 2
      March, 2014
      178 pages

      Publisher

      Academic Press, Inc.

      United States

      Publication History

      Published: 01 March 2014

      Author Tags

      1. Kernelization complexity
      2. Parameterization by vertex cover

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 03 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media