skip to main content
research-article

A review of the smart world

Published: 01 July 2019 Publication History

Abstract

Smart world is an attractive prospect with comprehensive development of ubiquitous computing involving penetrative intelligence into ubiquitous things, including physical objects (e.g., wearable devices), cyber entities (e.g., cloud services), social people (e.g., social networking) and human thinking (e.g., brain cognition). This work systematically overviews related works in the field of the smart world, and explains prospects in emerging areas. The smart world evolutions are discussed through four progressive phases, and the representative projects are accordingly introduced. Meanwhile, smart world elements and the smart world driven applications are respectively analyzed in the contexts of cyber–physical–social-thinking hyperspace. Moreover, enabling technologies including ubiquitous intelligence, web intelligence, brain informatics, social computing, big data, and security and privacy are respectively discussed. Finally, perspectives referring to ubiquitous sensing, ubiquitous object modeling, smart services, and philosophical, ethical and legal issues, are presented for identifying trends and challenges in the smart world.

Highlights

Smart world evolutions and representative projects are respectively surveyed.
Smart world elements and the smart world driven applications are explained.
Enabling technologies and trends are presented for identifying perspectives.

References

[1]
Ma J., Yang L.T., Apduhan B.O., Huang R., Barolli L., Takizawa M., Towards a smart world and ubiquitous intelligence: A walkthrough from smart things to smart hyperspaces and UbicKids, International Journal of Pervasive Computing and Communications 1 (1) (2005) 53–68.
[2]
Ning H., Liu H., Cyber-physical-social-thinking space based science and technology framework for the internet of things, Science China Information Sciences 58 (3) (2015) 1–19.
[3]
Simmon E., Sowe S.K., Zettsu K., Designing a cyber-physical cloud computing architecture, IT Professional 17 (3) (2015) 40–45.
[4]
Ma J., Zhao Q., Chaudhary V., Cheng J., Yang L.T., Huang R., Jin Q., Ubisafe computing: vision and challenges (I), in: Autonomic and Trusted Computing, Springer, 2006, pp. 386–397.
[5]
Rogers Y., Moving on from Weiser’s vision of calm computing: Engaging ubicomp experiences, ubiquitous computing, Lecture Notes in Computer Science (2006) 404–421.
[6]
Tao M., Zuo J., Liu Z., Castiglione A., Palmieri F., Multi-layer cloud architectural model and ontology-based security service framework for IoT-based smart homes, Future Gener. Comput. Syst. (2016).
[7]
Kubler S., Robert J., Hefnawy A., Framling K., Cherifi C., Bouras A., Open IoT eco-system for sporting event management, IEEE Access 5 (2017) 7064–7079.
[8]
Huang J., Xing C.C., Shin S., Hou F., Hsu C.H., Optimizing M2M communications and quality of services in the IoT for sustainable smart cities, IEEE Transactions on Sustainable Computing (2017).
[9]
Mezghani E., Exposito E., Drira K., A model-driven methodology for the design of autonomic and cognitive IoT-based systems: Application to healthcare, IEEE Transactions on Emerging Topics in Computational Intelligence 1 (3) (2017) 224–234.
[10]
Stergiou C., Psannis K.E., Kim B., Gupta B., Secure integration of IoT and cloud computing, Future Gener. Comput. Syst. (2016).
[11]
Song T., Li R., Mei B., Yu J., Xing X., Cheng X., A privacy preserving communication protocol for IoT applications in smart homes, IEEE Internet Things J. (2017).
[12]
Woo M.W., Lee J., Park K., A reliable IoT system for personal healthcare devices, Future Gener. Comput. Syst. (2017).
[13]
Kwon D., Hodkiewicz M.R., Fan J., Shibutani T., Pecht M.G., Prognostics I.T-B., Systems health management for industrial applications, IEEE Access 4 (2016) 3659–3670.
[14]
Shin D., Sharma V., Kim J., Kwon S., You I., Secure and efficient protocol for route optimization in PMIPv6-based smart home IoT networks, IEEE Access (2017).
[15]
Ma J., Ubiquitous intelligence –the intelligence revolution, ID People Magazine (2005).
[16]
Atzori L., Iera A., Morabito G., The internet of things: a survey, Comput. Netw. 54 (2010) 2787–2805.
[17]
Zhu C., Leung V.C., Shu L., Ngai E.C.H., Green internet of things for smart world, IEEE Access 3 (2015) 2151–2162.
[18]
Weiser M., The computer for the 21st century, Sci. Am. 265 (3) (1991) 94–104.
[19]
Bohn J., Coroama V., Langheinrich M., Mattern F., Rohs M., Living in a world of smart everyday objects-social, economic, and ethical implications, Human and Ecological Risk Assessment 10 (2004) 763–785.
[20]
Ning H., Wang Z., Future internet of things architecture: Like mankind neural system or social organization framework?, IEEE Commun. Lett. 15 (2011) 461–463.
[21]
H. Chourabi, T. Nam, S. Walker, J.R. Gil-Garcia, S. Mellouli, K. Nahon, T. Pardo, H.J. Scholl, Understanding smart cities: An integrative framework, the 45th IEEE International Conference on System Science (HICSS), (2012) 2289–2297.
[22]
Gubbi J., Buyya R., Marusic S., Palaniswami M., Internet of things (IoT): A vision, architectural elements, and future directions, Future Gener. Comput. Syst. 29 (2013) 1645–1660.
[23]
Guinard D., Trifa V., Mattern F., Wilde E., From the internet of things to the web of things: Resource-oriented architecture and best practices, architecting the internet of things, Springer, 2011, pp. 97–129.
[24]
Helal S., Mann W., King J., Kaddoura Y., Jansen E., The Gator tech smart house: A programmable pervasive space, Computer 38 (2005) 50–60.
[25]
Wang F., Carley K.M., Zeng D., Mao W., Social computing: From social informatics to social intelligence, IEEE Intell. Syst. 22 (2007) 79–83.
[26]
Xia F., Liu L., Li J., Ma J., Vasilakos A.V., Socially aware networking: A survey, IEEE Syst. J. 9 (2015) 904–921.
[27]
Atzori L., Iera A., Morabito G., SIOT: Giving a social structure to the internet of things, IEEE Commun. Lett. 15 (2011) 1193–1195.
[28]
Ning H., Liu H., Ma J., Yang L.T., Huang R., Cybermatics: Cyber-physical-social-thinking hyperspace based science and technology, Future Gener. Comput. Syst. 56 (2016) Cybermatics: Cyber-physical-social-thinking Hyperspace based Science and Technology.
[29]
Zhong N., Bradshaw J.M., Liu J., Taylor J.G., Informatics B., IEEE Intell. Syst 26 (2011) 16–21.
[30]
Ma J., Wen J., Huang R., Huang B., Cyber-individual meets brain informatics, IEEE Intell. Syst. (2011) 30–37.
[31]
N. Zhong, How to make web intelligence (WI) meets brain informatics (BI) successfully? the 30th IEEE Annual International Conference on Computer Software and Applications, (2006) 24–25.
[32]
Zhong N., Yau S.S., Ma J., Shimojo S., Just M., Hu B., Wang G., Oiwa K., Anzai Y., Brain informatics-based big data and the wisdom web of things, IEEE Intell. Syst. 30 (2015) 2–7.
[33]
Ma J., Ning H., Huang R., Liu H., Yang L.T., Chen J., Min G., Cybermatics: A holistic field for systematic study of cyber-enabled new worlds, IEEE Access 3 (2015) 2270–2280.
[34]
IBM, what’s new on a smarter planet? [online] http://www.ibm.com/smarterplanet/us/en/, (2017).
[37]
V. Stanford, J. Garofolo, O. Galibert, M. Michel, C. Laprun, The NIST smart space and meeting room projects: Signals, acquisition annotation, and metrics, IEEE International Conference on Acoustics, Speech, and Signal Processing, 4 (2003) IV-736–739 vol. 4.
[38]
IBM, what’s new on a smarter planet? [online] http://www.ibm.com/smarterplanet/us/en/, (2017).
[41]
[42]
S. C. Project, Smart City-a highest priority in national strategies across the world, [online] http://www.smartcity-planning.co.jp/en/outline/index.html, (2017).
[43]
Smart city expo world congress, [online] http://www.smartcityexpo.com/, (2017).
[47]
ESRI smart communities, (2016).
[48]
J. S. City, The Kitakyushu smart community project, [online] http://jscp.nepc.or.jp/en/kitakyushu/index.shtml, (2017).
[50]
The Australian smart communities association (ASCA) project, (2016).
[53]
A practical approach to smart building engineering and design, [online] http://www.smart-buildings.com/, (2012).
[54]
[55]
Service-oriented architectures for smart manufacturing project, [online] http://www.nist.gov/el/msid/proceng/smass.cfm, (2014).
[60]
E. Weremeychik, Best of 2014: How to design a smart hospital, [online] http://www.healthcaredesignmagazine.com/article/how-design-smart-hospital, (2014).
[67]
J. Ma, Cybermatics for cyberization towards cyber-enabled hyper worlds, The 4th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud), (2016) 85–86.
[68]
Bargh J.A., McKenna K.Y., Internet T., Life S., Annual Review of Psychology 55 (2004) 573–590.
[69]
Jiang Y., Jiang J., Understanding social networks from a multiagent perspective, IEEE Trans. Parallel Distrib. Syst 25 (2014) 2743–2759.
[70]
M. Dawot, N. Intan, R. Ibrahim, A review of features and functional building blocks of social media, The 8th IEEE Malaysian Software Engineering Conference (MySEC), (2014) 177–182.
[71]
Ning H., Liu H., Ma J., Yang L.T., Wan Y., Ye X., Huang R., From internet to smart world, IEEE Access 3 (2015) 1994–1999.
[72]
T. S. W. C. O. Committee, The open forum on top10Cs: Top 10 challenges for smart worlds, 3 (2015) 2475–2480.
[73]
R.H. Rawung, A.G. Putrada, Cyber physical system: Paper survey, IEEE International Conference on ICT For Smart Society (ICISS), (2014) 273–278.
[74]
S. Paul, M.S. Rabbani, R.K. Kundu, S.M.R. Zaman, A review of smart technology (Smart Grid) and its features, The 1st IEEE International Conference on Non Conventional Energy (ICONCE), (2014) 200–203.
[75]
H. Khan, Z. Xu, H. Iu, V. Sreeram, Review of technologies and implementation strategies in the area of smart grid, IEEE Conference on Power Engineering, (2009) 1–6.
[76]
Wan Y., Cao J., Zhang S., Tu G., Lu C., Xu X., Li K., An integrated cyber-physical simulation environment for smart grid applications, Tsinghua Science and Technology 19 (2014) 133–143.
[77]
Wang Y., Chen Q., Kang C., Zhang M., Wang K., Zhao Y., Profiling L., Its application to demand response: A review, Tsinghua Science and Technology 20 (2015) 117–129.
[78]
Miller M., The Internet of Things: How Smart TVs, Smart Cars, Smart Homes, and Smart Cities are Changing the World, Pearson Education, 2015.
[79]
Atzori L., Iera A., Morabito G., SIoT: giving a social structure to the internet of things, IEEE Commun. Lett. 15 (2011) 1193–1195.
[80]
Tavakolifard M., Almeroth K.C., Social computing: An intersection of recommender systems, trust/reputation systems, and social networks, IEEE Network 26 (2012) 53–58.
[81]
Howe J., The rise of crowdsourcing, Wired Magazine 14 (2006) 1–4.
[82]
Brabham D.C., Crowdsourcing As a Model for Problem Solving: Leveraging the Collective Intelligence of Online Communities for Public Good, The University of Utah, 2010.
[83]
Picard R.W., Affective computing: Challenges, Int. J. Hum.-Comput. Stud. 59 (2003) 55–64.
[84]
Picard R.W., Affective computing: From laughter to IEEE, IEEE Transactions on Affective Computing 1 (2010) 11–17.
[85]
Lopez-de Ipina D., Chen L., Mitton N., Pan G., Intelligence U., Computing for enabling a smarter world, Personal and Ubiquitous Computing (2017).
[86]
Wu H., Qiao C., De S., Tonguz O., Cellular I., Ad hoc relaying systems: iCAR, IEEE J. Sel. Areas Commun. 19 (2001) 2105–2115.
[87]
H. Luo, R. Ramjee, P. Sinha, L.E. Li, S. Lu, UCAN: A unified cellular and ad-hoc network architecture, ACM the 9th Annual International Conference on Mobile Computing and Networking, (2003) 353–367.
[89]
IBM, Personal information environment project (pie), [online] http://www.almaden.ibm.com/cs/projects/pie, (2017).
[90]
Yuan B., Herbert J., Fuzzy cara-a fuzzy-based context reasoning system for pervasive healthcare, Procedia Computer Science 10 (2012) 357–365.
[91]
Ranganathan A., Al-Muhtadi J., Campbell R.H., Reasoning about uncertain contexts in pervasive computing environments, IEEE Pervasive Computing (2004) 62–70.
[92]
Liao L., Patterson D.J., Fox D., Kautz H., Learning and inferring transportation routines, Artificial Intelligence 171 (2007) 311–331.
[93]
Yao Y., Zhong N., Liu J., Ohsuga S., Web intelligence (WI) research challenges and trends in the new information age, web intelligence: Research and development, Springer, 2001, pp. 1–17.
[94]
Li Z., Xu W., Zhang L., Lau R.Y., An ontology-based web mining method for unemployment rate prediction, Decis. Support Syst. 66 (2014) 114–122.
[95]
Bonaci T., Calo R., Chizeck H.J., App stores for the brain: Privacy and security in brain-computer interfaces, IEEE Technology and Society Magazine 34 (2015) 32–39.
[96]
Zhong N., Ma J., Huang R., Liu J., Yao Y., Zhang Y., Chen J., Research challenges and perspectives on wisdom web of things (W2T), The Journal of Supercomputing 64 (2013) 862–882.
[97]
Zhong N., Liu J., Yao Y., Wu J., Lu S., Qin Y., Li K., Wah B., Web Intelligence Meets Brain Informatics, Web Intelligence Meets Brain Informatics, Springer, 2007, pp. 1–31.
[98]
McFarland D.J., Wolpaw J.R., Brain-computer interfaces for communication and control, Commun. ACM 54 (2011) 60–66.
[99]
Riccio A., Mattia D., Simione L., Olivetti M., Cincotti F., Eye-gaze independent EEG-based brain-computer interfaces for communication, Journal of Neural Engineering 9 (2012) 045001.
[100]
M. Agarwal, R. Sivakumar, THINK: Toward practical general-purpose brain-computer communication, in Proceedings of the 2nd International Workshop on Hot Topics in Wireless, ACM, (2015), pp. 41–45.
[101]
Zhong N., Chen J., Constructing a new-style conceptual model of brain data for systematic brain informatics, IEEE Trans. Knowl. Data Eng. 24 (2012) 2127–2142.
[102]
Chen J., Zhong N., Data-Brain Modeling for Systematic Brain Informatics, Brain Informatics, Springer, 2009, pp. 182–193.
[103]
J. Chen, N. Zhong, Data-brain modeling based on brain informatics methodology, IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, (2008) 41–47.
[104]
Chen P.P.-S., The entity-relationship model-toward a unified view of data, ACM Trans. Database Syst. (TODS) 1 (1976) 9–36.
[105]
McGuinness D.L., Van Harmelen F., OWL web ontology language overview, W3C Recommendation 10 (2004) 2004.
[106]
Lazer D., Pentland A.S., Adamic L., Aral S., Barabasi A.L., Brewer D., Christakis N., Contractor N., Fowler J., Gutmann M., Life in the network: The coming age of computational social science, Science (New York, NY) 323 (2009) 721.
[107]
Kuang L., Hao F., Yang L.T., Lin M., Luo C., Min G., A tensor-based approach for big data representation and dimensionality reduction, IEEE Transactions on Emerging Topics in Computing 2 (2014) 280–291.
[108]
D. Feldman, M. Schmidt, C. Sohler, Turning big data into tiny data: Constant-size coresets for k-means, pca and projective clustering, The 24th Annual ACM-SIAM Symposium on Discrete Algorithms, (2013) 1434–1453.
[109]
Wang L., Lu K., Liu P., Ranjan R., Chen L., IK-SVD: dictionary learning for spatial big data via incremental atom update, Computing in Science & Engineering 16 (2014) 41–52.
[110]
Zhang Y., Chen M., Mao S., Hu L., Leung V., Cap: community activity prediction based on big data analysis, IEEE Network 28 (2014) 52–57.
[111]
Vakorin V.A., Kovacevic N., McIntosh A.R., Exploring transient transfer entropy based on a group-wise ICA decomposition of EEG data, Neuroimage 49 (2010) 1593–1600.
[112]
Du Y., Fan Y., Group information guided ICA for fMRI data analysis, NeuroImage 69 (2013) 157–197.
[113]
Lafon S., Lee A.B., Maps D., Coarse-graining: A unified framework for dimensionality reduction, graph partitioning, and data set parameterization, IEEE Trans. Pattern Anal. Mach. Intell. 28 (2006) 1393–1403.
[114]
L. Teng, H. Li, X. Fu, W. Chen, I. Shen, Dimension reduction of microarray data based on local tangent space alignment, The 4th IEEE Conference on Cognitive Informatics, (2005) 154–159.
[115]
Hinton G.E., Salakhutdinov R.R., Reducing the dimensionality of data with neural networks, Science 313 (2006) 504–507.
[116]
Yang L.T., Kuang L., Chen J., Hao F., Luo C., A holistic approach to distributed dimensionality reduction of big data, IEEE Transactions on Cloud Computing (2015).
[117]
Mo Y., Kim T.H.J., Brancik K., Dickinson D., Lee H., Perrig A., Sinopoli B., Cyber-physical security of a smart grid infrastructure, Proceedings of the IEEE 100 (2012) 195–209.
[118]
Hubaux J.P., Capkun S., Luo J., Security T., Privacy of smart vehicles, IEEE Security & Privacy (2004) 49–55.
[119]
Theoharidou M., Tsalis N., Gritzalis D., Smart home solutions for healthcare: Privacy in ubiquitous computing infrastructures, Handbook of Smart Homes, Health Care and Well-Being (2014).
[120]
Ning H., Liu H., Yang L.T., Cyberentity security in the internet of things, Computer (2013) 46–53.
[121]
Ning H., Liu H., Cyber-physical-social based security architecture for future internet of things, Advances in Internet of Things 2 (2012) 1–7.
[122]
Xu Z., Zhang H., Hu C., Mei L., Xuan J., Choo K.K.R., Sugumaran V., Zhu Y., Building knowledge base of urban emergency events based on crowdsourcing of social media, Concurrency and Computation: Practice and Experience (2016).
[123]
Yuror O., Liu C.H., Sheng Z., Leung V.C., Moreno W., Leung K.K., Context-awareness for mobile sensing: A survey and future directions, IEEE Communications Surveys & Tutorials 18 (2016) 68–93.
[124]
Guinard D., Trifa V., Karnouskos S., Spiess P., Savio D., Interacting with the SOA-based internet of things: Discovery, query, selection, and on-demand provisioning of web services, IEEE Transactions on Services Computing 3 (2010) 223–235.
[125]
Jara A.J., Zamora M.A., Skarmeta A.F., An internet of things-based personal device for diabetes therapy management in ambient assisted living (AAL), Personal and Ubiquitous Computing 15 (2011) 431–440.

Cited By

View all

Index Terms

  1. A review of the smart world
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Future Generation Computer Systems
          Future Generation Computer Systems  Volume 96, Issue C
          Jul 2019
          750 pages

          Publisher

          Elsevier Science Publishers B. V.

          Netherlands

          Publication History

          Published: 01 July 2019

          Author Tags

          1. Smart world
          2. Ubiquitous computing
          3. Ambient intelligence
          4. Cyber–physical–social-thinking
          5. Internet of Things

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 01 Jan 2025

          Other Metrics

          Citations

          Cited By

          View all

          View Options

          View options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media