skip to main content
research-article

Local certification of graphs with bounded genus

Published: 30 January 2023 Publication History

Abstract

Naor, Parter, and Yogev [SODA 2020] recently designed a compiler for automatically translating standard centralized interactive protocols to distributed interactive protocols, as introduced by Kol, Oshman, and Saxena [PODC 2018]. In particular, by using this compiler, every linear-time algorithm for deciding the membership to some fixed graph class can be translated into a dMAM ( O ( log n ) ) protocol for this class, that is, a distributed interactive protocol with O ( log n )-bit proof size in n-node graphs, and three interactions between the (centralized) computationally-unbounded but non-trustable prover Merlin, and the (decentralized) randomized computationally-limited verifier Arthur. As a corollary, there is a dMAM ( O ( log n ) ) protocol for recognizing the class of planar graphs, as well as for recognizing the class of graphs with bounded genus.
We show that there exists a distributed interactive protocol for recognizing the class of graphs with bounded genus performing just a single interaction, from the prover to the verifier, yet preserving proof size of O ( log n ) bits. This result also holds for the class of graphs with bounded non-orientable genus, that is, graphs that can be embedded on a non-orientable surface of bounded genus. The interactive protocols described in this paper are actually proof-labeling schemes, i.e., a subclass of interactive protocols, previously introduced by Korman, Kutten, and Peleg [PODC 2005]. In particular, these schemes do not require any randomization from the verifier, and the proofs may often be computed a priori, at low cost, by the nodes themselves. Our results thus extend the recent proof-labeling scheme for planar graphs by Feuilloley et al. [PODC 2020], to graphs of bounded genus, and to graphs of bounded non-orientable genus.

References

[1]
Abraham I., Gavoille C., Malkhi D., Compact routing for graphs excluding a fixed minor, in: 19th International Conference on Distributed Computing, in: LNCS 3724, DISC, Springer, 2005, pp. 442–456,.
[2]
Afek Y., Kutten S., Yung M., The local detection paradigm and its application to self-stabilization, Theoret. Comput. Sci. 186 (1–2) (1997) 199–229,.
[3]
S.A. Amiri, P.O. de Mendez, R. Rabinovich, S. Siebertz, Distributed Domination on Graph Classes of Bounded Expansion, in: 30th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA, 2018, pp. 143–151, https://doi.org/10.1145/3210377.3210383.
[4]
S.A. Amiri, S. Schmid, S. Siebertz, A Local Constant Factor MDS Approximation for Bounded Genus Graphs, in: ACM Symposium on Principles of Distributed Computing, PODC, 2016, pp. 227–233, https://doi.org/10.1145/2933057.2933084.
[5]
Amiri S.A., Schmid S., Siebertz S., Distributed dominating set approximations beyond planar graphs, ACM Trans. Algorithms 15 (3) (2019) 39:1–39:18,.
[6]
B. Awerbuch, B. Patt-Shamir, G. Varghese, Self-Stabilization By Local Checking and Correction (Extended Abstract), in: 32nd Symposium on Foundations of Computer Science, FOCS, 1991, pp. 268–277, https://doi.org/10.1109/SFCS.1991.185378.
[7]
Balliu A., D’Angelo G., Fraigniaud P., Olivetti D., What can be verified locally?, J. Comput. System Sci. 97 (2018) 106–120,.
[8]
Bonamy M., Gavoille C., Pilipczuk M., Shorter labeling schemes for planar graphs, in: ACM-SIAM Symposium on Discrete Algorithms, SODA, SIAM, 2020, pp. 446–462,.
[9]
Bousquet N., Feuilloley L., Pierron T., Local certification of graph decompositions and applications to minor-free classes, in: 25th International Conference on Principles of Distributed Systems, in: LIPIcs, vol. 217, OPODIS 2021, 2021, pp. 22:1–22:17,.
[10]
Brahana H., Systems of circuits on two-dimensional manifolds, Ann. of Math. 23 (1922) 144–168.
[11]
Censor-Hillel K., Paz A., Perry M., Approximate proof-labeling schemes, Theoret. Comput. Sci. 811 (2020) 112–124,.
[12]
Crescenzi P., Fraigniaud P., Paz A., Trade-offs in distributed interactive proofs, in: 33rd International Symposium on Distributed Computing, in: LIPIcs 146, DISC, Dagstuhl, 2019, pp. 13:1–13:17,.
[13]
A. Czygrinow, M. Hańćkowiak, Distributed Almost Exact Approximations for Minor-Closed Families, in: 14th Annual European Symposium on Algorithms, ESA, 2006, pp. 244–255, https://doi.org/10.1007/11841036_24.
[14]
A. Czygrinow, M. Hańćkowiak, E. Szymanska, W. Wawrzyniak, M. Witkowski, Distributed Local Approximation of the Minimum k-Tuple Dominating Set in Planar Graphs, in: 18th Int. Conference on Principles of Distributed Systems, OPODIS, 2014, pp. 49–59, https://doi.org/10.1007/978-3-319-14472-6_4.
[15]
Czygrinow A., Hańćkowiak M., Szymanska E., Wawrzyniak W., Witkowski M., Improved distributed local approximation algorithm for minimum 2-dominating set in planar graphs, Theoret. Comput. Sci. 662 (2017) 1–8,.
[16]
A. Czygrinow, M. Hańćkowiak, W. Wawrzyniak, Fast Distributed Approximations in Planar Graphs, in: 22nd Int. Symp. on Distributed Computing, DISC, 2008, pp. 78–92, https://doi.org/10.1007/978-3-540-87779-0_6.
[17]
Dujmovic V., Esperet L., Gavoille C., Joret G., Micek P., Morin P., Adjacency labelling for planar graphs (and beyond), J. ACM 68 (6) (2021) 42:1–42:33,.
[18]
Elek G., Planarity can be verified by an approximate proof labeling scheme in constant-time, J. Comb. Theory, Ser. A 191 (2022),.
[19]
Esperet L., Lévêque B., Local certification of graphs on surfaces, Theoret. Comput. Sci. 909 (2022) 68–75,.
[20]
Esperet L., Norin S., Testability and local certification of monotone properties in minor-closed classes, in: 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, in: LIPIcs, vol. 229, 2022, pp. 58:1–58:15,.
[21]
Feuilloley L., Bibliography of distributed approximation beyond bounded degree, 2020, CoRR abs/2001.08510 arXiv:2001.08510.
[22]
Feuilloley L., Bousquet N., Pierron T., What can be certified compactly? Compact local certification of MSO properties in tree-like graphs, in: Milani A., Woelfel P. (Eds.), PODC ’22: ACM Symposium on Principles of Distributed Computing, ACM, 2022, pp. 131–140,.
[23]
Feuilloley L., Fraigniaud P., Hirvonen J., A hierarchy of local decision, Theoret. Comput. Sci. 856 (2021) 51–67,.
[24]
Feuilloley L., Fraigniaud P., Hirvonen J., Paz A., Perry M., Redundancy in distributed proofs, Distribut. Comput. 34 (2) (2021) 113–132,.
[25]
Feuilloley L., Fraigniaud P., Montealegre P., Rapaport I., Rémila É., Todinca I., Compact distributed certification of planar graphs, Algorithmica 83 (7) (2021) 2215–2244,.
[26]
Fraigniaud P., Korman A., Peleg D., Towards a complexity theory for local distributed computing, J. ACM 60 (5) (2013) 35:1–35:26,.
[27]
Fraigniaud P., Montealegre P., Oshman R., Rapaport I., Todinca I., On distributed merlin-arthur decision protocols, in: 26th Int. Colloquium Structural Information and Communication Complexity, in: LNCS 11639, SIROCCO, Springer, 2019, pp. 230–245,.
[28]
P. Fraigniaud, P. Montealegre, I. Rapaport, I. Todinca, A Meta-Theorem for Distributed Certification, in: M. Parter (Ed.), Structural Information and Communication Complexity - 29th International Colloquium, SIROCCO 2022, vol. 13298, 2022, pp. 116–134, https://doi.org/10.1007/978-3-031-09993-9_7.
[29]
Fraigniaud P., Patt-Shamir B., Perry M., Randomized proof-labeling schemes, Distrib. Comput. 32 (3) (2019) 217–234,.
[30]
Gavoille C., Hanusse N., Compact routing tables for graphs of bounded genus, in: 26th Int. Coll. on Automata, Languages and Programming, in: LNCS 1644, ICALP, Springer, 1999, pp. 351–360,.
[31]
M. Ghaffari, B. Haeupler, Distributed Algorithms for Planar Networks I: Planar Embedding, in: ACM Symposium on Principles of Distributed Computing, PODC, 2016a, pp. 29–38, https://doi.org/10.1145/2933057.2933109.
[32]
M. Ghaffari, B. Haeupler, Distributed Algorithms for Planar Networks II: Low-Congestion Shortcuts, MST, and Min-Cut, in: 27th ACM-SIAM Symposium on Discrete Algorithms, SODA, 2016b, pp. 202–219, https://doi.org/10.1137/1.9781611974331.ch16.
[33]
Ghaffari M., Parter M., Near-optimal distributed DFS in planar graphs, in: 31st Int. Symp. on Distributed Computing, in: LIPIcs, DISC, Dagstuhl, 2017, pp. 21:1–21:16,.
[34]
Göös M., Suomela J., Locally checkable proofs in distributed computing, Theory Comput. 12 (1) (2016) 1–33,.
[35]
M. Hilke, C. Lenzen, J. Suomela, Brief announcement: local approximability of minimum dominating set on planar graphs, in: ACM Symposium on Principles of Distributed Computing, PODC, 2014, pp. 344–346, https://doi.org/10.1145/2611462.2611504.
[36]
Indyk P., Sidiropoulos A., Probabilistic embeddings of bounded genus graphs into planar graphs, in: Erickson J. (Ed.), Proceedings of the 23rd ACM Symposium on Computational Geometry, Gyeongju, South Korea, June 6-8, 2007, ACM, 2007, pp. 204–209,.
[37]
G. Itkis, L.A. Levin, Fast and Lean Self-Stabilizing Asynchronous Protocols, in: 35th Annual Symposium on Foundations of Computer Science, FOCS, 1994, pp. 226–239, https://doi.org/10.1109/SFCS.1994.365691.
[38]
G. Kol, R. Oshman, R.R. Saxena, Interactive Distributed Proofs, in: ACM Symposium on Principles of Distributed Computing, PODC, 2018, pp. 255–264, URL.
[39]
Korman A., Kutten S., Peleg D., Proof labeling schemes, Distrib. Comput. 22 (4) (2010) 215–233,.
[40]
F. Kuhn, T. Moscibroda, R. Wattenhofer, What cannot be computed locally!, in: 23rd ACM Symposium on Principles of Distributed Computing, PODC, 2004, pp. 300–309, https://doi.org/10.1145/1011767.1011811.
[41]
C. Lenzen, Y.A. Oswald, R. Wattenhofer, What can be approximated locally?: case study: dominating sets in planar graphs, in: 20th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA, 2008, pp. 46–54, https://doi.org/10.1145/1378533.1378540.
[42]
Lenzen C., Pignolet Y.A., Wattenhofer R., Distributed minimum dominating set approximations in restricted families of graphs, Distrib. Comput. 26 (2) (2013) 119–137,.
[43]
Massey W., Ewing J., Gerhing F., Halmos P., A Basic Course in Algebraic Topology, in: Graduate Texts in Mathematics, Springer New York, 1991.
[44]
Mohar B., Thomassen C., Graphs on Surfaces, in: Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, ISBN 9780801866890, 2001, URL https://books.google.fr/books?id=_VFKscYKSicC.
[45]
M. Naor, M. Parter, E. Yogev, The Power of Distributed Verifiers in Interactive Proofs, in: 31st ACM-SIAM Symposium on Discrete Algorithms, SODA, 2020, pp. 1096–115, https://doi.org/10.1137/1.9781611975994.67.
[46]
Naor M., Stockmeyer L.J., What can be computed locally?, SIAM J. Comput. 24 (6) (1995) 1259–1277,.
[47]
Nesetril J., de Mendez P.O., Sparsity - Graphs, Structures, and Algorithms, in: Algorithms and combinatorics, vol. 28, Springer, ISBN 978-3-642-27874-7, 2012,.
[48]
Ortner R., Embeddability of arrangements of pseudocircles into the sphere, European J. Combin. 29 (2) (2008) 457–469,.
[49]
Parsons T.D., Pica G., Pisanski T., Ventre A.G.S., Orientably simple graphs, Math. Slovaca 37 (4) (1987) 391–394. URL http://dml.cz/dmlcz/129376.
[50]
Peleg D., Distributed Computing: A Locality-Sensitive Approach, SIAM, 2000.
[51]
Peleg D., Rubinovich V., A near-tight lower bound on the time complexity of distributed minimum-weight spanning tree construction, SIAM J. Comput. 30 (5) (2000) 1427–1442,.
[52]
Poincaré H., Sur la généralisation d’un théorème d’Euler relatif aux polyèdres, C.R. Hebdo. SÉances Acad. Sci. 117 (1893) 144–145.
[53]
Sarma A.D., Holzer S., Kor L., Korman A., Nanongkai D., Pandurangan G., Peleg D., Wattenhofer R., Distributed verification and hardness of distributed approximation, SIAM J. Comput. 41 (5) (2012) 1235–1265,.
[54]
Wawrzyniak W., A strengthened analysis of a local algorithm for the minimum dominating set problem in planar graphs, Inf. Process. Lett. 114 (3) (2014) 94–98,.
[55]
Wawrzyniak W., A local approximation algorithm for minimum dominating set problem in anonymous planar networks, Distrib. Comput. 28 (5) (2015) 321–331,.
[56]
Youngs J., Minimal imbeddings and the genus of a graph, J. Math. Mech. 12 (1963) 303–315.

Cited By

View all

Index Terms

  1. Local certification of graphs with bounded genus
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Discrete Applied Mathematics
      Discrete Applied Mathematics  Volume 325, Issue C
      Jan 2023
      309 pages

      Publisher

      Elsevier Science Publishers B. V.

      Netherlands

      Publication History

      Published: 30 January 2023

      Author Tags

      1. Distributed graph algorithms
      2. Local certification
      3. Proof-labeling scheme
      4. Locally checkable proofs

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 17 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media