skip to main content
review-article

Vision-based approaches towards person identification using gait

Published: 01 November 2021 Publication History

Abstract

Visual surveillance has exponentially increased the growth of security devices and systems in the digital era. Gait-based person identification is an emerging biometric modality for automatic visual surveillance and monitoring as the walking patterns highly correlate to the subject’s identity. The scientific research on person identification using gait has grown dramatically over the past two decades due to its several benefits. It does not require active collaboration from users and can be performed without their cooperation. It is difficult to be impersonated and identification can be validated from low-resolution videos and with simple instrumentation. This paper presents a comprehensive overview of the exiting techniques, their key stages, and recent developments in vision-based person identification using gait. We reviewed the historical research on gait locomotion and explain that how it is used to recognize the identity. The article summarizes the different types of features that have been proposed to encode the biomechanics of gait and also groups them into different categories and subcategories based upon the similarity in their implementation. We also present the impact of different covariate factors that affect the performance of gait recognition systems and also discuss the recent works to cope with these challenges. Furthermore, a comparison of the recognition accuracies reported by the existing algorithms to assess their performance under verification and identification mode is also presented. A detailed summary of publicly available vision-based gait databases is also provided. Finally, it offers insight into the challenges and open problems for future perspectives in the field of gait recognition that can help to set the directions for future research in this field.

References

[1]
D. Gafurov, A survey of biometric gait recognition: Approaches, security and challenges, in: Ann. Norwegian Comput. Sci. Conf. 2007, pp. 19–21.
[2]
Nambiar A., Bernardino A., Nascimento J.C., Gait-based person re-identification: A survey, ACM Comput. Surv. 52 (2) (2019) 33.
[4]
Khan M.H., Human Activity Analysis in Visual Surveillance and Healthcare, vol. 45, Logos Verlag Berlin GmbH, 2018.
[5]
Sun Y., Zhang M., Sun Z., Tan T., Demographic analysis from biometric data: Achievements, challenges, and new frontiers, IEEE Trans. Pattern Anal. Mach. Intell. 40 (2) (2018) 332–351.
[6]
Pillai J.K., Puertas M., Chellappa R., Cross-sensor iris recognition through kernel learning, IEEE Trans. Pattern Anal. Mach. Intell. 36 (1) (2014) 73–85.
[7]
Khan M.H., Farid M.S., Grzegorzek M., Person identification using spatiotemporal motion characteristics, in: Proc. Int. Conf. Image Process. (ICIP), IEEE, 2017, pp. 166–170.
[8]
Boyd J.E., Little J.J., Biometric gait recognition, in: Advanced Studies in Biometrics, Springer, 2005, pp. 19–42.
[9]
Masood H., Farooq H., A proposed framework for vision based gait biometric system against spoofing attacks, in: Int. Conf. Commun. Comput. Digital Syst. (C-CODE), IEEE, 2017, pp. 357–362.
[10]
Nixon M.S., Carter J.N., Advances in automatic gait recognition, in: Int. Conf. Autom. Face Gesture Recognit, IEEE, 2004, pp. 139–144.
[11]
A. Mansur, Y. Makihara, R. Aqmar, Y. Yagi, Gait recognition under speed transition, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), 2014, pp. 2521–2528.
[12]
Aqmar M.R., Shinoda K., Furui S., Robust gait recognition against speed variation, in: Proc. Int. Conf. Pattern Recognit. (ICPR), IEEE, 2010, pp. 2190–2193.
[13]
Y. Guan, C.-T. Li, A robust speed-invariant gait recognition system for walker and runner identification, in: IEEE Int. Conf. Biometrics, 2013, pp. 1–8.
[14]
Yu S., Tan D., Tan T., A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition, in: Proc. Int. Conf. Pattern Recognit. (ICPR), vol. 4, IEEE, 2006, pp. 441–444.
[15]
Q. Chen, Y. Wang, Z. Liu, Q. Liu, D. Huang, Feature map pooling for cross-view gait recognition based on silhouette sequence images, arXiv preprint arXiv:1711.09358.
[16]
Muramatsu D., Makihara Y., Yagi Y., View transformation model incorporating quality measures for cross-view gait recognition, IEEE Trans. Cybern. 46 (7) (2016) 1602–1615.
[17]
Z. Zhang, J. Chen, Q. Wu, L. Shao, Gii representation-based cross-view gait recognition by discriminative projection with list-wise constraints, IEEE Trans. Cybern.
[18]
Connor P., Ross A., Biometric recognition by gait: A survey of modalities and features, Comput. Vis. Image Underst. 167 (2018) 1–27.
[19]
Aristotle, On the gait of animals (350 BC).
[20]
Wilhelm W., Eduard W., Mechanics of the human walking apparatus, 1679.
[21]
Inman V.T., Eberhart H.D., et al., The major determinants in normal and pathological gait, JBJS 35 (3) (1953) 543–558.
[22]
Zuniga E., Leavitt L., Analysis of gait: A method of measurement, in: Biomechanics IV, Springer, 1974, pp. 85–90.
[23]
Jacobs N., Skorecki J., Charnley J., Analysis of the vertical component of force in normal and pathological gait, J. Biomech. 5 (1) (1972) 11–34.
[24]
Meyer J.S., D.W. BARRON J., Apraxia of gait: a clinico-physiological study, Brain 83 (2) (1960) 261–284.
[25]
Wadsworth J.B., Smidt G.L., Johnston R.C., Gait characteristics of subjects with hip disease, Phys. Ther. 52 (8) (1972) 829–839.
[26]
First use of forensic gait analysis evidence in court, 2019, https://www.guinnessworldrecords.com/world-records/first-use-of-forensic-gait-analysis-evidence-in-court/, [Online; accessed 19-December-2019].
[27]
Larsen P.K., Simonsen E.B., Lynnerup N., Gait analysis in forensic medicine, J. Forensic Sci. 53 (5) (2008) 1149–1153.
[28]
Bouchrika I., Goffredo M., Carter J., Nixon M., On using gait in forensic biometrics, J. Forensic Sci. 56 (4) (2011) 882–889.
[29]
Gage J.R., Gait analysis. an essential tool in the treatment of cerebral palsy, Clin. Orthop. Related Res. (1993) 126–134.
[30]
Whittle M.W., Clinical gait analysis: A review, Hum. Mov. Sci. 15 (3) (1996) 369–387.
[31]
Rougier C., Meunier J., St-Arnaud A., Rousseau J., Fall detection from human shape and motion history using video surveillance, in: IEEE Int. Conf. Adv. Inf. Netw. Appl. Workshops (AINAW), vol. 2, IEEE, 2007, pp. 875–880.
[32]
Prajapati S.K., Gage W.H., Brooks D., Black S.E., McIlroy W.E., A novel approach to ambulatory monitoring: investigation into the quantity and control of everyday walking in patients with subacute stroke, Neurorehabilit. Neural. Repair 25 (1) (2011) 6–14.
[33]
Johansson G., Visual perception of biological motion and a model for its analysis, Percept. Psychophys. 14 (2) (1973) 201–211.
[34]
S.A. Niyogi, E.H. Adelson, et al. Analyzing and recognizing walking figures in xyt, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), 94, 1994, pp. 469–474.
[35]
Phillips P.J., Sarkar S., Robledo I., Grother P., Bowyer K., The gait identification challenge problem: Data sets and baseline algorithm, in: Object Recognition Supported By User Interaction for Service Robots, vol. 1, IEEE, 2002, pp. 385–388.
[36]
Sarkar S., et al., The humanid gait challenge problem: Data sets, performance, and analysis, IEEE Trans. Pattern Anal. Mach. Intell. 27 (2) (2005) 162–177.
[37]
M. Hofmann, S. Bachmann, G. Rigoll, 2.5D gait biometrics using the depth gradient histogram energy image, in: IEEE Int. Conf. Biometrics: Theory, Appl. Syst. (BTAS), 2012, pp. 399–403.
[38]
Khan M.H., Shirahama K., Farid M.S., Grzegorzek M., Multiple human detection in depth images, in: Proc. Int. Workshop Multimed. Signal Process. (MMSP), IEEE, 2016, pp. 1–6.
[39]
Lam T.H., Cheung K.H., Liu J.N., Gait flow image: A silhouette-based gait representation for human identification, Pattern Recognit. 44 (4) (2011) 973–987.
[40]
Khan M.H., Li F., Farid M.S., Grzegorzek M., Gait recognition using motion trajectory analysis, in: Proc. Int. Conf. Comput. Recognit. Systems (CORES), Springer, 2017, pp. 73–82.
[41]
Barrett D., One surveillance camera for every 11 people in britain, says cctv survey, 2013, https://www.telegraph.co.uk/technology/10172298/One-surveillance-camera-for-every-11-people-in-Britain-says-CCTV-survey.html/, [Online; accessed 01-March-2018].
[42]
Wiegler L., Big brother in the big apple [national security-video surveillance], Eng. Technol. 3 (9) (2008) 24–27.
[43]
Ilg W., Seemann J., Unravelling quantitative measures of free-living ataxic gait in cerebellar patients using wearable sensors, 2018, http://www.compsens.uni-tuebingen.de/compsens/index.php/people?view=project&task=show&id=89, [Online; accessed 01-December-2018].
[44]
Sensfloor, https://future-shape.com/, [Online; accessed 01-December-2018].
[45]
Singh J.P., Jain S., Arora S., Singh U.P., A survey of behavioral biometric gait recognition: Current success and future perspectives, Arch. Comput. Methods Eng. (2019) 1–42.
[46]
Sprager S., Juric M., Inertial sensor-based gait recognition: A review, Sensors 15 (9) (2015) 22089–22127.
[47]
Tao W., Liu T., Zheng R., Feng H., Gait analysis using wearable sensors, Sensors 12 (2) (2012) 2255–2283.
[48]
Weingaertner T., Hassfeld S., Dillmann R., Human motion analysis: A review, in: Proc. Workshop Motion Non-Rigid Articulated Objects (NAM), IEEE Computer Society, 1997, p. 90.
[49]
Wang J., She M., Nahavandi S., Kouzani A., A review of vision-based gait recognition methods for human identification, in: Int. Conf. Digit. Imag. Comput.: Tech. Appl., IEEE, 2010, pp. 320–327.
[50]
Kumar M., Singh N., Kumar R., Goel S., Kumar K., Gait recognition based on vision systems: A systematic survey, J. Vis. Commun. Image Represent. 75 (2021).
[51]
A. Sepas-Moghaddam, A. Etemad, Deep gait recognition: A survey, arXiv preprint arXiv:2102.09546.
[52]
G. Sahu, P. Parida, et al. A contemporary survey on human gait recognition. J. Inf. Assur. Secur. 15 (3).
[53]
Ukrit M.F., Nithyakani P., The systematic review on gait analysis: Trends and developments, Eur. J. Mol. Clin. Med. 7 (6) (2020) 1636–1654.
[54]
R. Divya, R. Lavanya, A systematic review on gait based authentication system, in: 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), IEEE, 2020, pp. 505–509.
[55]
R.C. Saxe, S. Kappagoda, D.K. Mordecai, Classification of pathological and normal gait: A survey, arXiv preprint arXiv:2012.14465.
[56]
E.R. Isaac, S. Elias, S. Rajagopalan, K. Easwarakumar, Trait of gait: A survey on gait biometrics, arXiv preprint arXiv:1903.10744.
[57]
Sahak R., Zakaria N.K., Tahir N.M., Yassin A.I.M., Jailani R., Review on current methods of gait analysis and recognition using kinect, in: Int. Colloq. Signal Process. & Appl. (CSPA), IEEE, 2019, pp. 229–234.
[58]
Rida I., Almaadeed N., Almaadeed S., Robust gait recognition: a comprehensive survey, IET Biometr. 8 (1) (2018) 14–28.
[59]
Wan C., Wang L., Phoha V.V., A survey on gait recognition, ACM Comput. Surv. 51 (5) (2018) 89.
[60]
Singh J.P., Jain S., Arora S., Singh U.P., Vision-based gait recognition: a survey, IEEE Access 6 (2018) 70497–70527.
[61]
Prakash C., Kumar R., Mittal N., Recent developments in human gait research: parameters, approaches, applications, machine learning techniques, datasets and challenges, Artif. Intell. Rev. 49 (1) (2018) 1–40.
[62]
Lee C.P., Tan A., Lim K., Review on vision-based gait recognition: Representations, classification schemes and datasets, Am. J. Appl. Sci. 14 (2) (2017) 252–266.
[63]
M. Nordin, A. Saadoon, A survey of gait recognition based on skeleton mode l for human identification, Res. J. Appl. Sci. Eng. Technol.
[64]
T. Connie, K.O.M. Goh, A.B.J. Teoh, A review for gait recognition across view, in: Int. Conf. Information Commun. Tech. IEEE, 2015, pp. 574–577.
[65]
Lv Z., Xing X., Wang K., Guan D., Class energy image analysis for video sensor-based gait recognition: A review, Sensors 15 (1) (2015) 932–964.
[66]
Lee T.K., Belkhatir M., Sanei S., A comprehensive review of past and present vision-based techniques for gait recognition, Multimedia Tools Appl. 72 (3) (2014) 2833–2869.
[67]
S. Shirke, S. Pawar, K. Shah, Literature review: Model free human gait recognition, in: Int. Conf. Commun. Sys. Netw. Technol., IEEE, 2014, pp. 891–895.
[68]
Chai Y., Ren J., Han W., Li H., Human gait recognition: approaches, datasets and challenges, 2011.
[69]
Zhang Z., Hu M., Wang Y., A survey of advances in biometric gait recognition, in: Chin. Conf. Biometric Recognit, Springer, 2011, pp. 150–158.
[70]
R. Morris, S. Lawson, A Review and Evaluation of Available Gait Analysis Technologies, and Their Potential for the Measurement of Impact Transmission, Newcastle University.
[71]
Liu L.-F., Jia W., Zhu Y.-H., Survey of gait recognition, in: Int. Conf. Intell. Comput., Springer, 2009, pp. 652–659.
[72]
Lai D.T., Begg R.K., Palaniswami M., Computational intelligence in gait research: a perspective on current applications and future challenges, IEEE Trans. Inf. Technol. Biomed. 13 (5) (2009) 687–702.
[73]
Hu W., Tan T., Wang L., Maybank S., A survey on visual surveillance of object motion and behaviors, IEEE Trans. Syst. Man, Cybern. 34 (3) (2004) 334–352.
[74]
Moeslund T.B., Granum E., A survey of computer vision-based human motion capture, Comput. Vis. Image Underst. 81 (3) (2001) 231–268.
[75]
Chau T., A review of analytical techniques for gait data. Part 2: Neural network and wavelet methods, Gait & Posture 13 (2) (2001) 102–120.
[76]
Aggarwal J.K., Cai Q., Human motion analysis: A review, Comput. Vis. Image Underst. 73 (3) (1999) 428–440.
[77]
BenAbdelkader C., Cutler R., Davis L., Person identification using automatic height and stride estimation, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), 4, IEEE, 2002, pp. 377–380.
[78]
Fisher N.M., White S., Yack H., Smolinski R., Pendergast D., Effect of acl reconstruction and gait speed on characteristics of midstance and stride length, 2013, https://sites.google.com/a/wfu.edu/aclgait/introduction, [Online; accessed 01-March-2018].
[79]
Khan M.H., Zöller M., Farid M.S., Grzegorzek M., Marker-based movement analysis of human body parts in therapeutic procedure, Sensors 20 (11) (2020) 3312.
[80]
Khan M.H., Schneider M., Farid M.S., Grzegorzek M., Detection of infantile movement disorders in video data using deformable part-based model, Sensors 18 (10) (2018) 3202.
[81]
Khan M.H., Helsper J., Farid M.S., Grzegorzek M., A computer vision-based system for monitoring vojta therapy, J. Med. Informat. 113 (2018) 85–95.
[82]
Khan M.H., Grzegorzek M., Vojta-therapy: A vision-based framework to recognize the movement patterns, Int. J. Softw. Innovat. 5 (3) (2017) 18–32.
[83]
Moore J.K., Hnat S.K., van den Bogert A.J., An elaborate data set on human gait and the effect of mechanical perturbations, PeerJ 3 (2015).
[84]
Paolini G., Peruzzi A., Mirelman A., Cereatti A., Gaukrodger S., Hausdorff J.M., Della Croce U., Validation of a method for real time foot position and orientation tracking with microsoft kinect technology for use in virtual reality and treadmill based gait training programs, IEEE Trans. Neural Syst. Rehabil. Eng. 22 (5) (2014) 997–1002.
[85]
Ishikawa Y., An Q., Nakagawa J., Oka H., Yasui T., Tojima M., Inokuchi H., Haga N., Yamakawa H., Tamura Y., et al., Gait analysis of patients with knee osteoarthritis by using elevation angle: confirmation of the planar law and analysis of angular difference in the approximate plane, Adv. Robot. 31 (1–2) (2017) 68–79.
[86]
Zeng W., Wang C., Yang F., Silhouette-based gait recognition via deterministic learning, Pattern Recognit. 47 (11) (2014) 3568–3584.
[87]
Bachlin M., Plotnik M., Roggen D., Maidan I., Hausdorff J.M., Giladi N., Troster G., Wearable assistant for parkinson’s disease patients with the freezing of gait symptom, IEEE Trans. Inf. Technol. Biomed. 14 (2) (2009) 436–446.
[88]
Ngo T.T., Makihara Y., Nagahara H., Mukaigawa Y., Yagi Y., Similar gait action recognition using an inertial sensor, Pattern Recognit. 48 (4) (2015) 1289–1301.
[89]
Leder R.S., et al., Intendo wii remote for computer simulated arm and wrist therapy in stroke survivors with upper extremity hemipariesis, Virtual Rehabil., IEEE (2008) 74.
[90]
Zheng S., Huang K., Tan T., Evaluation framework on translation-invariant representation for cumulative foot pressure image, in: Proc. Int. Conf. Image Process. (ICIP), IEEE, 2011, pp. 201–204.
[91]
Taborri J., Palermo E., Rossi S., Cappa P., Gait partitioning methods: A systematic review, Sensors 16 (1) (2016) 66.
[92]
Castro F.M., Marín-Jiménez M.J., Mata N.G., Muñoz Salinas R., Fisher motion descriptor for multiview gait recognition, Int. J. Pattern Recognit. Artif. Intell. 31 (01) (2017).
[93]
Han J., Bhanu B., Individual recognition using gait energy image, IEEE Trans. Pattern Anal. Mach. Intell. 28 (2) (2006) 316–322.
[94]
Wang C., Zhang J., Wang L., Pu J., Yuan X., Human identification using temporal information preserving gait template, IEEE Trans. Pattern Anal. Mach. Intell. 34 (11) (2012) 2164–2176.
[95]
Sudha L., Bhavani R., An efficient spatio-temporal gait representation for gender classification, Applied Artif. Intell. 27 (1) (2013) 62–75.
[96]
Zhang E., Zhao Y., Xiong W., Active energy image plus 2dlpp for gait recognition, Signal Process. 90 (7) (2010) 2295–2302.
[97]
D. Tan, K. Huang, S. Yu, T. Tan, Efficient night gait recognition based on template matching, in: Proc. Int. Conf. Pattern Recognit. (ICPR), vol. 3, 2006, pp. 1000–1003.
[98]
M.H. Khan, M.S. Farid, M. Grzegorzek, Spatiotemporal feature of human motion for gait recognition, Signal Image Video Process.
[99]
Muslim U.B., Khan M.H., Farid M.S., Exploiting spatiotemporal features for action recognition, in: 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), IEEE, 2021, pp. 1–7.
[100]
Bouchrika I., Nixon M.S., Model-based feature extraction for gait analysis and recognition, in: Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Springer, 2007, pp. 150–160.
[101]
C. Yam, M.S. Nixon, J.N. Carter, Gait recognition by walking and running: a model-based approach, in: Asian Conf. Comput. Vis. (ACCV), 2002, pp. 1–6.
[102]
Cunado D., Nixon M.S., Carter J.N., Automatic extraction and description of human gait models for recognition purposes, Comput. Vis. Image Underst. 90 (1) (2003) 1–41.
[103]
Wang L., Ning H., Tan T., Hu W., Fusion of static and dynamic body biometrics for gait recognition, IEEE Trans. Circuits Syst. Video Technol. 14 (2) (2004) 149–158.
[104]
Bobick A.F., Johnson A.Y., Gait recognition using static, activity-specific parameters, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), vol. 1, IEEE, 2001, I.
[105]
I. Bouchrika, Parametric elliptic fourier descriptors for automated extraction of gait features for people identification, in: Int. Symp. Program. Sys. (ISPS), 2015, pp. 1–7.
[106]
Lee L., Grimson W.E.L., Gait analysis for recognition and classification, in: Int. Conf. Autom. Face Gesture Recognit., IEEE, 2002, pp. 155–162.
[107]
S. Sivapalan, D. Chen, S. Denman, S. Sridharan, C. Fookes, 3d ellipsoid fitting for multi-view gait recognition, in: IEEE Int. Conf. Adv. Video Signal-Based Surv. (AVSS), IEEE, 2011, pp. 355–360.
[108]
Y. Chai, Q. Wang, J. Jia, R. Zhao, A novel human gait recognition method by segmenting and extracting the region variance feature, in: Proc. Int. Conf. Pattern Recognit. (ICPR), 4, 2006, pp. 425–428.
[109]
Lu H., Plataniotis K.N., Venetsanopoulos A.N., A full-body layered deformable model for automatic model-based gait recognition, EURASIP J. Adv. Signal Process. 2008 (2008) 62.
[110]
Wang L., Tan T., Hu W., Ning H., et al., Automatic gait recognition based on statistical shape analysis, IEEE Trans. Image Process. 12 (9) (2003) 1120–1131.
[111]
Kusakunniran W., Wu Q., Zhang J., Li H., Pairwise shape configuration-based psa for gait recognition under small viewing angle change, in: IEEE Int. Conf. Adv. Video Signal-Based Surv. (AVSS), IEEE, 2011, pp. 17–22.
[112]
Goffredo M., Carter J.N., Nixon M.S., Front-view gait recognition, in: IEEE Int. Conf. Biometrics: Theory, Appl. Syst. (BTAS), IEEE, 2008, pp. 1–6.
[113]
Tan D., Huang K., Yu S., Tan T., Uniprojective features for gait recognition, in: Proc. Int. Conf. Biometrics, Springer, 2007, pp. 673–682.
[114]
D. Tan, S. Yu, K. Huang, T. Tan, Walker recognition without gait cycle estimation, in: Proc. Int. Conf. Biometrics, 2007, pp. 222–231.
[115]
Kusakunniran W., Attribute-based learning for gait recognition using spatio-temporal interest points, Image Vis. Comput. 32 (12) (2014) 1117–1126.
[116]
BenAbdelkader C., Cutler R., Davis L., Stride and cadence as a biometric in automatic person identification and verification, in: Int. Conf. Autom. Face Gesture Recognit., IEEE, 2002, pp. 372–377.
[117]
Tafazzoli F., Safabakhsh R., Model-based human gait recognition using leg and arm movements, Eng. Appl. Artif. Intell. 23 (8) (2010) 1237–1246.
[118]
Yoo J.-H., Hwang D., Moon K.-Y., Nixon M.S., Automated human recognition by gait using neural network, in: 1st Workshops Image Process. Theory, Tools Appl, IEEE, 2008, pp. 1–6.
[119]
Huang X., Boulgouris N.V., Model-based human gait recognition using fusion of features, in: Proc. Int. Conf. Acoust. Speech and Signal Process. (ICASSP), IEEE, 2009, pp. 1469–1472.
[120]
Bouchrika I., Boukrouche A., Markerless extraction of gait features using haar-like template for view-invariant biometrics, in: Int. Conf. Sci. Tech. Autom. Control Computer Eng. (STA), IEEE, 2014, pp. 519–524.
[121]
N. Li, X. Zhao, C. Ma, A model-based gait recognition method based on gait graph convolutional networks and joints relationship pyramid mapping, arXiv preprint arXiv:2005.08625.
[122]
Liao R., Yu S., An W., Huang Y., A model-based gait recognition method with body pose and human prior knowledge, Pattern Recognit. 98 (2020).
[123]
J. Luo, T. Tjahjadi, View and clothing invariant gait recognition via 3d human semantic folding, IEEE Access.
[124]
Choi S., Kim J., Kim W., Kim C., Skeleton-based gait recognition via robust frame-level matching, IEEE Trans. Inf. Forensics Security 14 (10) (2019) 2577–2592.
[125]
Chen X., Xu J., Weng J., Multi-gait recognition using hypergraph partition, Mach. Vis. Appl. 28 (1–2) (2017) 117–127.
[126]
Khamsemanan N., Nattee C., Jianwattanapaisarn N., Human identification from freestyle walks using posture-based gait feature, IEEE Trans. Inf. Forensics Secur. 13 (1) (2017) 119–128.
[127]
Chattopadhyay P., Sural S., Mukherjee J., Frontal gait recognition from occluded scenes, Pattern Recognit. Lett. 63 (2015) 9–15.
[128]
Gu J., Ding X., Wang S., Wu Y., Action and gait recognition from recovered 3-d human joints, IEEE Trans. Syst. Man, Cybern. 40 (4) (2010) 1021–1033.
[129]
Kim D., Paik J., Gait recognition using active shape model and motion prediction, IET Comput. Vis. 4 (1) (2010) 25–36.
[130]
Lu H., Plataniotis K.N., Venetsanopoulos A.N., A full-body layered deformable model for automatic model-based gait recognition, EURASIP J. Adv. Signal Process. 2008 (1) (2007).
[131]
Boulgouris N.V., Chi Z.X., Human gait recognition based on matching of body components, Pattern Recognit. 40 (6) (2007) 1763–1770.
[132]
Zhang J., Collins R., Liu Y., Representation and matching of articulated shapes, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), vol. 2, IEEE, 2004, p. II.
[133]
Dockstader S.L., Berg M.J., Tekalp A.M., Stochastic kinematic modeling and feature extraction for gait analysis, IEEE Trans. Image Process. 12 (8) (2003) 962–976.
[134]
Deng M., Wang C., Human gait recognition based on deterministic learning and data stream of microsoft kinect, IEEE Trans. Circuits Syst. Video Technol. 29 (12) (2018) 3636–3645.
[135]
Yeoh T.W., Daolio F., Aguirre H.E., Tanaka K., On the effectiveness of feature selection methods for gait classification under different covariate factors, Appl. Soft Comput. 61 (2017) 42–57.
[136]
Deng M., Wang C., Cheng F., Zeng W., Fusion of spatial–temporal and kinematic features for gait recognition with deterministic learning, Pattern Recognit. 67 (2017) 186–200.
[137]
Bouchrika I., Carter J.N., Nixon M.S., Towards automated visual surveillance using gait for identity recognition and tracking across multiple non-intersecting cameras, Multimedia Tools Appl. 75 (2) (2016) 1201–1221.
[138]
Wang Y., Sun J., Li J., Zhao D., Gait recognition based on 3d skeleton joints captured by kinect, in: Proc. Int. Conf. Image Process. (ICIP), IEEE, 2016, pp. 3151–3155.
[139]
López-Fernández D., et al., A new approach for multi-view gait recognition on unconstrained paths, J. Vis. Commun. Image Represent. 38 (2016) 396–406.
[140]
Kastaniotis D., Theodorakopoulos I., Theoharatos C., Economou G., Fotopoulos S., A framework for gait-based recognition using kinect, Pattern Recognit. Lett. 68 (2015) 327–335.
[141]
Zeng W., Wang C., Li Y., Model-based human gait recognition via deterministic learning, Cogn. Comput. 6 (2) (2014) 218–229.
[142]
Kwolek B., Krzeszowski T., Michalczuk A., Josinski H., 3d gait recognition using spatio-temporal motion descriptors, in: Asian Conf. Intell. Inf. Database Sys, Springer, 2014, pp. 595–604.
[143]
Krzeszowski T., Michalczuk A., Kwolek B., Switonski A., Josinski H., Gait recognition based on marker-less 3d motion capture, in: Int. Conf. Advanced Video Signal Surveill, IEEE, 2013, pp. 232–237.
[144]
Choudhury S.D., Tjahjadi T., Silhouette-based gait recognition using procrustes shape analysis and elliptic fourier descriptors, Pattern Recognit. 45 (9) (2012) 3414–3426.
[145]
Ariyanto G., Nixon M.S., Marionette mass–spring model for 3d gait biometrics, in: IEEE Int. Conf. Biometrics, IEEE, 2012, pp. 354–359.
[146]
Yoo J.-H., Nixon M.S., Automated markerless analysis of human gait motion for recognition and classification, Etri J. 33 (2) (2011) 259–266.
[147]
Zhang X., Fan G., Dual gait generative models for human motion estimation from a single camera, IEEE Trans. Syst. Man Cybern. 40 (4) (2010) 1034–1049.
[148]
Goffredo M., Bouchrika I., Carter J.N., Nixon M.S., Self-calibrating view-invariant gait biometrics, IEEE Trans. Syst. Man Cybern. 40 (4) (2009) 997–1008.
[149]
Zhang R., Vogler C., Metaxas D., Human gait recognition at sagittal plane, Image Vis. Comput. 25 (3) (2007) 321–330.
[150]
Zhao G., Liu G., Li H., Pietikainen M., 3d gait recognition using multiple cameras, in: Int. Conf. Autom. Face Gesture Recognit, IEEE, 2006, pp. 529–534.
[151]
Urtasun R., Fua P., 3d tracking for gait characterization and recognition, in: Int. Conf. Autom. Face Gesture Recognit, IEEE, 2004, pp. 17–22.
[152]
Wagg D.K., Nixon M.S., On automated model-based extraction and analysis of gait, in: Int. Conf. Autom. Face Gesture Recognit, IEEE, 2004, pp. 11–16.
[153]
Yam C., Nixon M.S., Carter J.N., Automated person recognition by walking and running via model-based approaches, Pattern Recognit. 37 (5) (2004) 1057–1072.
[154]
Yoo J.-H., Nixon M.S., Harris C.J., Model-driven statistical analysis of human gait motion, in: Proc. Int. Conf. Image Process. (ICIP), vol. 1, IEEE, 2002, I.
[155]
Tanawongsuwan R., Bobick A., Gait recognition from time-normalized joint-angle trajectories in the walking plane, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), vol. 2, IEEE, 2001, II–II.
[156]
Lu W., Zong W., Xing W., Bao E., Gait recognition based on joint distribution of motion angles, J. Vis. Lang. Comput. 25 (6) (2014) 754–763.
[157]
Fathima S.S.S., Banu R.W., Human gait recognition based on motion analysis including ankle to foot angle measurement, in: Int. Conf. Comput. Electron. Elect. Technol. (ICCEET), IEEE, 2012, pp. 1133–1136.
[158]
Boulgouris N.V., Hatzinakos D., Plataniotis K.N., Gait recognition: a challenging signal processing technology for biometric identification, IEEE Signal Process. Mag. 22 (6) (2005) 78–90.
[159]
Y. Yang, D. Tu, G. Li, Gait recognition using flow histogram energy image, in: Proc. Int. Conf. Pattern Recognit. (ICPR), 2014, pp. 444–449.
[160]
Murase H., Sakai R., Moving object recognition in eigenspace representation: gait analysis and lip reading, Pattern Recognit. Lett. 17 (2) (1996) 155–162.
[161]
Bobick A.F., Davis J.W., The recognition of human movement using temporal templates, IEEE Trans. Pattern Anal. Mach. Intell. 23 (3) (2001) 257–267.
[162]
Lee C.P., Tan A.W., Tan S.C., Time-sliced averaged motion history image for gait recognition, J. Vis. Commun. Image Represent. 25 (5) (2014) 822–826.
[163]
Liu Z., Sarkar S., Simplest representation yet for gait recognition: Averaged silhouette, in: Proc. Int. Conf. Pattern Recognit. (ICPR), vol. 4, IEEE, 2004, pp. 211–214.
[164]
Xu D., Yan S., Tao D., Zhang L., Li X., Zhang H.-J., Human gait recognition with matrix representation, IEEE Trans. Circuits Syst. Video Technol. 16 (7) (2006) 896–903.
[165]
Yang X., Zhou Y., Zhang T., Shu G., Yang J., Gait recognition based on dynamic region analysis, Signal Process. 88 (9) (2008) 2350–2356.
[166]
Huang D.-Y., Lin T.-W., Hu W.-C., Cheng C.-H., Gait recognition based on gabor wavelets and modified gait energy image for human identification, J. Electron. Imaging 22 (4) (2013).
[167]
Boulgouris N.V., Chi Z.X., Gait recognition using radon transform and linear discriminant analysis, IEEE Trans. Image Process. 16 (3) (2007) 731–740.
[168]
Chen C., Liang J., Zhao H., Hu H., Tian J., Frame difference energy image for gait recognition with incomplete silhouettes, Pattern Recognit. Lett. 30 (11) (2009) 977–984.
[169]
Chen C., Liang J., Zhao H., Hu H., Tian J., Frame difference energy image for gait recognition with incomplete silhouettes, Pattern Recognit. Lett. 30 (11) (2009) 977–984.
[170]
Bashir K., Xiang T., Gong S., Gait recognition without subject cooperation, Pattern Recognit. Lett. 31 (13) (2010) 2052–2060.
[171]
S. Sivapalan, D. Chen, S. Denman, S. Sridharan, C. Fookes, Gait energy volumes and frontal gait recognition using depth images, in: Proc. Int. Joint Conf. Biometrics (IJCB), 2011, pp. 1–6.
[172]
Aqmar M.R., Fujihara Y., Makihara Y., Yagi Y., Gait recognition by fluctuations, Comput. Vis. Image Underst. 126 (2014) 38–52.
[173]
Luo J., Zhang J., Zi C., Niu Y., Tian H., Xiu C., Gait recognition using gei and afdei, Int. J. Opt. (2015).
[174]
Arora P., Hanmandlu M., Srivastava S., Gait based authentication using gait information image features, Pattern Recognit. Lett. 68 (2015) 336–342.
[175]
Shannon C.E., A mathematical theory of communication, Bell Sys. Tech. J. 27 (3) (1948) 379–423.
[176]
Hanmandlu M., Das A., Content-based image retrieval by information theoretic measure, Defence Sci. J. 61 (5) (2011) 415.
[177]
Zhang E.-H., Ma H.-B., Lu J.-W., Chen Y.-J., Gait recognition using dynamic gait energy and pca+ lpp method, in: Int. Conf. Mach. Learn. Cybern., vol. 1, IEEE, 2009, pp. 50–53.
[178]
He X., Niyogi P., Locality preserving projections, in: Adv. Neural Inf. Process. Sys., 2004, pp. 153–160.
[179]
S.-l. Xu, Q.-j. Zhang, Gait recognition using fuzzy principal component analysis, in: Int. Conf. E-business Inf. Sys. Secur. IEEE, 2010, pp. 1–4.
[180]
Rao C.R., The use and interpretation of principal component analysis in applied research, 1964, pp. 329–358.
[181]
Whytock T., Belyaev A., Robertson N.M., Dynamic distance-based shape features for gait recognition, J. Math. Imaging Vision 50 (3) (2014) 314–326.
[182]
Roy A., Sural S., A fuzzy inferencing system for gait recognition, in: Annu. Meeting North American Fuzzy Inf. Process. Soc. (NAFIPS), IEEE, 2009, pp. 1–6.
[183]
Guo H., Li B., Zhang Y., Zhang Y., Li W., Qiao F., Rong X., Zhou S., Gait recognition based on the feature extraction of gabor filter and linear discriminant analysis and improved local coupled extreme learning machine, Math. Probl. Eng. (2020).
[184]
B. Peng, W. Zhu, X. Wang, Deep residual matrix factorization for gait recognition, in: Proc. Int. Conf. Mach. Learn. Comput. 2020, pp. 330–334.
[185]
G. Premalatha, P.V. Chandramani, Improved gait recognition through gait energy image partitioning, Comput. Intell.
[186]
J. Loureiro, P.L. Correia, Using a skeleton gait energy image for pathological gait classification, in: Int. Conf. Autom. Face Gesture Recognit., 2020, pp. 410–414.
[187]
Anusha R., Jaidhar C., Gaussian filtered gait energy template and centroid corner distance features for human gait recognition, in: Conf. Ind. Inf. Sys. (ICIIS), IEEE, 2019, pp. 425–430.
[188]
Chhatrala R., Patil S., Lahudkar S., Jadhav D.V., Sparse multilinear laplacian discriminant analysis for gait recognition, Pattern Anal. Appl. 22 (2) (2019) 505–518.
[189]
Mukherjee S., Chaudhary K., Jain P., Paul B., Gait recognition using segmented motion flow energy image, in: Int. Conf. Comput. Commun. Netw. Technol. (ICCCNT), IEEE, 2019, pp. 1–6.
[190]
Wang X., Wang J., Yan K., Gait recognition based on gabor wavelets and (2d) 2 pca, Multimedia Tools Appl. 77 (10) (2018) 12545–12561.
[191]
Ma G., Wu L., Wang Y., A general subspace ensemble learning framework via totally-corrective boosting and tensor-based and local patch-based extensions for gait recognition, Pattern Recognit. 66 (2017) 280–294.
[192]
Ma G., Wang Y., Wu L., Subspace ensemble learning via totally-corrective boosting for gait recognition, Neurocomput. 224 (2017) 119–127.
[193]
N. Jia, V. Sanchez, C.-T. Li, Learning optimised representations for view-invariant gait recognition, in: Proc. Int. Joint Conf. Biometrics (IJCB), IEEE, 2017, pp. 774–780.
[194]
Chen X., Xu J., Uncooperative gait recognition: Re-ranking based on sparse coding and multi-view hypergraph learning, Pattern Recognit. 53 (2016) 116–129.
[195]
Rida I., Almaadeed S., Bouridane A., Gait recognition based on modified phase-only correlation, Signal Image Video Process. 10 (3) (2016) 463–470.
[196]
Lishani A.O., Boubchir L., Khalifa E., Bouridane A., Gabor filter bank-based gei features for human gait recognition, in: Proc. IEEE Int. Conf. Telecommun. Signal Process. (TSP), IEEE, 2016, pp. 648–651.
[197]
Chen J., Liu J., Average gait differential image based human recognition, Scientific World J. (2014).
[198]
Lee H., Baek J., Kim E., A probabilistic image-weighting scheme for robust silhouette-based gait recognition, Multimedia Tools Appl. 70 (3) (2014) 1399–1419.
[199]
Chattopadhyay P., Roy A., Sural S., Mukhopadhyay J., Pose depth volume extraction from rgb-d streams for frontal gait recognition, J. Vis. Commun. Image Represent. 25 (1) (2014) 53–63.
[200]
Roy A., Sural S., Mukherjee J., Gait recognition using pose kinematics and pose energy image, Signal Process. 92 (3) (2012) 780–792.
[201]
Guan Y., Li C.-T., Roli F., On reducing the effect of covariate factors in gait recognition: a classifier ensemble method, IEEE Trans. Pattern Anal. Mach. Intell. 37 (7) (2014) 1521–1528.
[202]
Lishani A.O., Boubchir L., Bouridane A., Haralick features for gei-based human gait recognition, in: Proc. IEEE Int. Conf. Microelectronics (ICM), IEEE, 2014, pp. 36–39.
[203]
Martín-Félez R., Xiang T., Uncooperative gait recognition by learning to rank, Pattern Recognit. 47 (12) (2014) 3793–3806.
[204]
Lai Z., Xu Y., Jin Z., Zhang D., Human gait recognition via sparse discriminant projection learning, IEEE Trans. Circuits Syst. Video Technol. 24 (10) (2014) 1651–1662.
[205]
Lu J., Wang G., Moulin P., Human identity and gender recognition from gait sequences with arbitrary walking directions, IEEE Trans. Inf. Forensics Secur. 9 (1) (2013) 51–61.
[206]
Hofmann M., Rigoll G., Improved gait recognition using gradient histogram energy image, in: Proc. Int. Conf. Image Process. (ICIP), IEEE, 2012, pp. 1389–1392.
[207]
Xu D., Huang Y., Zeng Z., Xu X., Human gait recognition using patch distribution feature and locality-constrained group sparse representation, IEEE Trans. Image Process. 21 (1) (2011) 316–326.
[208]
Huang X., Boulgouris N.V., Gait recognition with shifted energy image and structural feature extraction, IEEE Trans. Image Process. 21 (4) (2011) 2256–2268.
[209]
Wang C., Zhang J., Pu J., Yuan X., Wang L., Chrono-gait image: A novel temporal template for gait recognition, in: ECCV, Springer, 2010, pp. 257–270.
[210]
Seely R.D., Samangooei S., Lee M., Carter J.N., Nixon M.S., The university of southampton multi-biometric tunnel and introducing a novel 3d gait dataset, in: IEEE Int. Conf. Biometrics: Theory, Appl. Syst. (BTAS), IEEE, 2008, pp. 1–6.
[211]
Tao D., Li X., Wu X., Maybank S.J., General tensor discriminant analysis and gabor features for gait recognition, IEEE Trans. Pattern Anal. Mach. Intell. 29 (10) (2007) 1700–1715.
[212]
Xu D., Yan S., Tao D., Lin S., Zhang H.-J., Marginal fisher analysis and its variants for human gait recognition and content-based image retrieval, IEEE Trans. Image Process. 16 (11) (2007) 2811–2821.
[213]
Foster J.P., Nixon M.S., Prügel-Bennett A., Automatic gait recognition using area-based metrics, Pattern Recognit. Lett. 24 (14) (2003) 2489–2497.
[214]
Johnson A.Y., Bobick A.F., A multi-view method for gait recognition using static body parameters, in: Int. Conf. Audio Video-Based Biometric Pers. Authentication, Springer, 2001, pp. 301–311.
[215]
BenAbdelkader C., Cutler R., Davis L., View-invariant estimation of height and stride for gait recognition, in: Int. Workshop Biometric Authentication, Springer, 2002, pp. 155–167.
[216]
Cuntoor N., Kale A., Chellappa R., Combining multiple evidences for gait recognition, in: Proc. Int. Conf. Acoust. Speech Signal Process.(ICASSP), vol. 3, IEEE, 2003, p. III–33.
[217]
Cattin P.C., Biometric Authentication System using Human Gait, (Ph.D. thesis) ETH Zurich, 2002.
[218]
Kale A., Rajagopalan A., Cuntoor N., Kruger V., Gait-based recognition of humans using continuous hmms, in: Int. Conf. Autom. Face Gesture Recognit., IEEE, 2002, pp. 336–341.
[219]
Tieu N.-D.T., Nguyen H.H., Fang F., Yamagishi J., Echizen I., An rgb gait anonymization model for low-quality silhouettes, in: Asia-Pacific Signal Inf. Process. Assoc. Annu. Summit Conf. (APSIPA ASC), IEEE, 2019, pp. 1686–1693.
[220]
Shaban Al-Ani M., Mohammadi M., AlyanNezhadi M., Gait recognition based on measurements of moving human legs angles, Int. J. Eng. 33 (5) (2020) 975–983.
[221]
Kale A., Cuntoor N., Yegnanarayana B., Rajagopalan A., Chellappa R., Gait analysis for human identification, in: Int. Conf. Audio Video-Based Biometric Pers. Authentication, Springer, 2003, pp. 706–714.
[222]
Hong S., Lee H., Nizami I.F., Kim E., A new gait representation for human identification: mass vector, in: Conf. Ind. Electron. Appl., IEEE, 2007, pp. 669–673.
[223]
Tan D., Huang K., Yu S., Tan T., Recognizing night walkers based on one pseudoshape representation of gait, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), IEEE, 2007, pp. 1–8.
[224]
S. Sivapalan, D. Chen, S. Denman, S. Sridharan, C. Fookes, Histogram of weighted local directions for gait recognition, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), 2013, pp. 125–130.
[225]
Boulgouris N.V., Plataniotis K.N., Hatzinakos D., Gait recognition using linear time normalization, Pattern Recognit. 39 (5) (2006) 969–979.
[226]
Tan D., Huang K., Yu S., Tan T., Orthogonal diagonal projections for gait recognition, in: Proc. Int. Conf. Image Process. (ICIP), vol. 1, IEEE, 2007, pp. I–337.
[227]
Castro F.M., Marin-Jimenez M.J., Guil N., de la Blanca N.P., Multimodal feature fusion for cnn-based gait recognition: an empirical comparison, Neural Comput. Appl. 32 (17) (2020) 14173–14193.
[228]
Shehata A., Hayashi Y., Makihara Y., Muramatsu D., Yagi Y., Does my gait look nice? human perception-based gait relative attribute estimation using dense trajectory analysis, in: Pattern Recognit, Springer International Publishing, 2020, pp. 90–105.
[229]
Lenac K., Sušanj D., Ramakić A., Pinčić D., Extending appearance based gait recognition with depth data, Appl. Sci. 9 (24) (2019) 5529.
[230]
Balazia M., Sojka P., You are how you walk: Uncooperative mocap gait identification for video surveillance with incomplete and noisy data, in: Proc. Int. Joint Conf. Biometrics (IJCB), IEEE, 2017, pp. 208–215.
[231]
Liu Y., Zhang J., Wang C., Wang L., Multiple hog templates for gait recognition, in: Proc. Int. Conf. Pattern Recognit. (ICPR), IEEE, 2012, pp. 2930–2933.
[232]
Huang Y., Xu D., Cham T.-J., Face and human gait recognition using image-to-class distance, IEEE Trans. Circuits Syst. Video Technol. 20 (3) (2009) 431–438.
[233]
Wang L., Tan T., Ning H., Hu W., Silhouette analysis-based gait recognition for human identification, IEEE Trans. Pattern Anal. Mach. Intell. 25 (12) (2003) 1505–1518.
[234]
F. Dadashi, B.N. Araabi, H. Soltanian-Zadeh, Gait recognition using wavelet packet silhouette representation and transductive support vector machines, in: IEEE Int. Cong. Image Signal Process. (CISP), 2009, pp. 1–5.
[235]
Zhang Y., Yang N., Li W., Wu X., Ruan Q., Gait recognition using procrustes shape analysis and shape context, in: Asian Conf. Comput. Vis. (ACCV), Springer, 2009, pp. 256–265.
[236]
Belongie S., Malik J., Puzicha J., Shape matching and object recognition using shape contexts, IEEE Trans. Pattern Anal. Mach. Intell. 24 (4) (2002) 509–522.
[237]
Yu S., Wang L., Hu W., Tan T., Gait analysis for human identification in frequency domain, in: Int. Conf. Image Graph. (ICIG), IEEE, 2004, pp. 282–285.
[238]
Mowbray S.D., Nixon M.S., Automatic gait recognition via fourier descriptors of deformable objects, in: Int. Conf. Audio Video-Based Biometric Pers. Authentication, Springer, 2003, pp. 566–573.
[239]
Guang-Jian T., Fu-Yuan H., Rong-Chun Z., Gait recognition based on fourier descriptors, in: Proc. Int. Symp. Intell. Multimed. Video Speech Process, IEEE, 2004, pp. 29–32.
[240]
Lee C.P., Tan A.W., Tan S.C., Gait recognition via optimally interpolated deformable contours, Pattern Recognit. Lett. 34 (6) (2013) 663–669.
[241]
DeCann B., Ross A., Gait curves for human recognition, backpack detection, and silhouette correction in a nighttime environment, in: SPIE Defense, Security, and Sensing, 2010, p. 76670Q.
[242]
W. Kusakunniran, Q. Wu, J. Zhang, H. Li, Speed-invariant gait recognition based on procrustes shape analysis using higher-order shape configuration, in: Proc. Int. Conf. Image Process. (ICIP), 2011, pp. 545–548.
[243]
Kusakunniran W., Wu Q., Zhang J., Li H., Gait recognition across various walking speeds using higher order shape configuration based on a differential composition model, IEEE Trans. Syst. Man, Cybern. B 42 (6) (2012) 1654–1668.
[244]
El-Alfy H., Mitsugami I., Yagi Y., A new gait-based identification method using local gauss maps, in: Asian Conf. Comput. Vis. (ACCV), Springer, 2015, pp. 3–18.
[245]
Zheng S., Zhang J., Huang K., He R., Tan T., Robust view transformation model for gait recognition, in: Proc. Int. Conf. Image Process. (ICIP), IEEE, 2011, pp. 2073–2076.
[246]
Nandy A., Chakraborty R., Chakraborty P., Cloth invariant gait recognition using pooled segmented statistical features, Neurocomput. 191 (2016) 117–140.
[247]
Collins R.T., Gross R., Shi J., Silhouette-based human identification from body shape and gait, in: Int. Conf. Autom. Face Gesture Recognit, IEEE, 2002, pp. 366–371.
[248]
Su H., Huang F., Gait recognition using principal curves and neural networks, in: Int. Symp. Neural Netw, Springer, 2006, pp. 238–243.
[249]
BenAbdelkader C., Cutler R.G., Davis L.S., Gait recognition using image self-similarity, EURASIP J. Adv. Signal Process. 2004 (4) (2004) 1–14.
[250]
Yuan W., Xiao Q., Li L., Gait recognition based on fourier descriptors and canonical time warping, in: Int. Symp. Computat. Intell. Design (ISCID), vol. 1, IEEE, 2015, pp. 64–67.
[251]
Kusakunniran W., Recognizing gaits on spatio-temporal feature domain, IEEE Trans. Inf. Forensics Secur. 9 (9) (2014) 1416–1423.
[252]
Kusakunniran W., Wu Q., Zhang J., Li H., Speed-invariant gait recognition based on procrustes shape analysis using higher-order shape configuration, in: Proc. Int. Conf. Image Process., ICIP, IEEE, 2011, pp. 545–548.
[253]
Lu X., Huang H., Zhang B., Recognition of human movement based on fourier descriptors, in: Int. Conf. Bioinformatics Bio-Med. Eng, IEEE, 2008, pp. 1943–1946.
[254]
Wang L., Ning H., Hu W., Tan T., Gait recognition based on procrustes shape analysis, in: Proc. Int. Conf. Image Process. (ICIP), vol. 3, IEEE, 2002, III–III.
[255]
Wang L., Hu W., Tan T., A new attempt to gait-based human identification, in: Object Recognition Supported By User Interaction for Service Robots, Vol. 1, IEEE, 2002, pp. 115–118.
[256]
Huang P.S., Harris C.J., Nixon M.S., Recognising humans by gait via parametric canonical space, Artif. Intell. Eng. 13 (4) (1999) 359–366.
[257]
F.M. Castro, et al. Automatic learning of gait signatures for people identification, arXiv preprint arXiv:1603.01006.
[258]
Castro F.M., Marín-Jiménez M.J., Guil N., López-Tapia S., de la Blanca N.P., Evaluation of cnn architectures for gait recognition based on optical flow maps, in: Int. Conf. Biometrics Special Interest Group (BIOSIG), IEEE, 2017, pp. 1–5.
[259]
A. Sokolova, A. Konushin, Gait recognition based on convolutional neural networks. Int. Archives Photogramm. Remote Sens. Spatial Inf. Sci. 42.
[260]
Bashir K., Xiang T., Gong S., Mary Q., Gait representation using flow fields, in: BMVC, 2009, pp. 1–11.
[261]
H. Wang, C. Schmid, Action recognition with improved trajectories, in: Proc. IEEE Int. Conf. Comput. Vis., ICCV, 2013, pp. 3551–3558.
[262]
Little J., Boyd J., Recognizing people by their gait: the shape of motion, Videre: J. Comput. Vis. Res. 1 (2) (1998) 1–32.
[263]
M.M. Hasan, H.A. Mustafa, Multi-level feature fusion for robust pose-based gait recognition using rnn, Int. J. Comput. Sci. Inf. Secur. (IJCSIS) 18 (1).
[264]
W. Sheng, X. Li, Siamese denoising autoencoders for joints trajectories reconstruction and robust gait recognition, Neurocomput.
[265]
Marín-Jiménez M.J., Castro F.M., Carmona-Poyato Á., Guil N., On how to improve tracklet-based gait recognition systems, Pattern Recognit. Lett. 68 (2015) 103–110.
[266]
W. Gong, M. Sapienza, F. Cuzzolin, Fisher tensor decomposition for unconstrained gait recognition, Training 2 (3).
[267]
Castro F.M., Marín-Jimenez M.J., Medina-Carnicer R., Pyramidal fisher motion for multiview gait recognition, in: Proc. Int. Conf. Pattern Recognit., ICPR, IEEE, 2014, pp. 1692–1697.
[268]
Jain M., Jegou H., Bouthemy P., Better exploiting motion for better action recognition, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., CVPR, 2013, pp. 2555–2562.
[269]
Sánchez J., Perronnin F., Mensink T., Verbeek J., Image classification with the fisher vector: Theory and practice, Int. J. Comput. Vis. 105 (3) (2013) 222–245.
[270]
Hu M., Wang Y., Zhang Z., Zhang D., Little J.J., Incremental learning for video-based gait recognition with lbp flow, IEEE Trans. Cybern. 43 (1) (2013) 77–89.
[271]
Shutler J.D., Nixon M.S., Zernike velocity moments for sequence-based description of moving features, Image Vis. Comput. 24 (4) (2006) 343–356.
[272]
Lam T.H., Lee R.S., Zhang D., Human gait recognition by the fusion of motion and static spatio-temporal templates, Pattern Recognit. 40 (9) (2007) 2563–2573.
[273]
Delgado-Esca no R., Castro F.M., Cózar J.R., Marín-Jiménez M.J., Guil N., Mupeg—the multiple person gait framework, Sensors 20 (5) (2020) 1358.
[274]
Khan M.H., Farid M.S., Grzegorzek M., A generic codebook based approach for gait recognition, Multimedia Tools Appl. 78 (24) (2019) 35689–35712.
[275]
Mahfouf Z., Merouani H.F., Bouchrika I., Harrati N., Investigating the use of motion-based features from optical flow for gait recognition, Neurocomput. 283 (2018) 140–149.
[276]
Su Y., Feng Z., Xing M., Spatio-temporal large margin nearest neighbor (st-lmnn) based on riemannian features for individual identification, in: Proc. IEEE Int. Conf. Multimed. and Expo (ICME), IEEE, 2018, pp. 1–6.
[277]
Batchuluun G., Naqvi R.A., Kim W., Park K.R., Body-movement-based human identification using convolutional neural network, Expert Syst. Appl. 101 (2018) 56–77.
[278]
Rida I., Jiang X., Marcialis G.L., Human body part selection by group lasso of motion for model-free gait recognition, IEEE Signal Process. Lett. 23 (1) (2016) 154–158.
[279]
Tafazzoli F., Bebis G., Louis S., Hussain M., Genetic feature selection for gait recognition, J. Electron. Imag. 24 (1) (2015).
[280]
Rida I., Jiang X., Marcialis G.L., Human body part selection by group lasso of motion for model-free gait recognition, IEEE Signal Process. Lett. 23 (1) (2015) 154–158.
[281]
Ran Y., Zheng Q., Chellappa R., Strat T.M., Applications of a simple characterization of human gait in surveillance, IEEE Trans. Syst. Man, Cybern. 40 (4) (2010) 1009–1020.
[282]
Park J., Lee Y., Ko H., Dynamic time warping based identification using gabor feature of adaptive motion model for walking humans, Int. J. Control Auto. Syst. 7 (5) (2009) 817.
[283]
Havasi L., Szlávik Z., Szirányi T., Higher order symmetry for non-linear classification of human walk detection, Pattern Recognit. Lett. 27 (7) (2006) 822–829.
[284]
Little J., Boyd J., Describing motion for recognition, in: Proc. Int. Symp. Comput. Vis. (ISCV), IEEE, 1995, pp. 235–240.
[285]
Gross R., Shi J., The Cmu Motion of Body (Mobo) Database, Carnegie Mellon University, 2001.
[288]
Weinland D., Ronfard R., Boyer E., Free viewpoint action recognition using motion history volumes, Comput. Vis. Image Understand. 104 (2–3) (2006) 249–257.
[289]
Farhadi A., Tabrizi M.K., Learning to recognize activities from the wrong view point, in: ECCV, Springer, 2008, pp. 154–166.
[290]
Wu Z., Huang Y., Wang L., Wang X., Tan T., A comprehensive study on cross-view gait based human identification with deep cnns, IEEE Trans. Pattern Anal. Mach. Intell. 39 (2) (2017) 209–226.
[291]
Portillo-Portillo J., et al., Cross view gait recognition using joint-direct linear discriminant analysis, Sensors 17 (1) (2016) 6.
[292]
Bodor R., Drenner A., Fehr D., Masoud O., Papanikolopoulos N., View-independent human motion classification using image-based reconstruction, Int. J. Comput. Vis. 27 (8) (2009) 1194–1206.
[293]
M.H. Khan, M.S. Farid, M. Grzegorzek, A non-linear view transformations model for cross-view gait recognition, Neurocomput.
[294]
Liu N., Lu J., Tan Y.-P., Joint subspace learning for view-invariant gait recognition, IEEE Signal Process. Lett. 18 (7) (2011) 431–434.
[295]
Kale A., Chowdhury A.K.R., Chellappa R., Towards a view invariant gait recognition algorithm, in: IEEE Int. Conf. Adv. Video Signal-Based Surv., AVSS, IEEE, 2003, pp. 143–150.
[296]
Jean F., Bergevin R., Albu A.B., Computing and evaluating view-normalized body part trajectories, Image Vis. Comput. 27 (9) (2009) 1272–1284.
[297]
Ben X., Zhang P., Meng W., Yan R., Yang M., Liu W., Zhang H., On the distance metric learning between cross-domain gaits, Neurocomput. 208 (2016) 153–164.
[298]
Su J., Zhao Y., Li X., Deep metric learning based on center-ranked loss for gait recognition, in: Proc. Int. Conf. Acoust. Speech and Signal Process. (ICASSP), IEEE, 2020, pp. 4077–4081.
[299]
Hu H., Multiview gait recognition based on patch distribution features and uncorrelated multilinear sparse local discriminant canonical correlation analysis, IEEE Trans. Circuits Syst. Video Technol. 24 (4) (2014) 617–630.
[300]
Bashir K., Xiang T., Gong S., Cross-view gait recognition using correlation strength, in: BMVC, 2010, pp. 1–11.
[301]
Kusakunniran W., Wu Q., Zhang J., Li H., Wang L., Recognizing gaits across views through correlated motion co-clustering, IEEE Trans. Image Process. 23 (2) (2014) 696–709.
[302]
Xing X., Wang K., Yan T., Lv Z., Complete canonical correlation analysis with application to multi-view gait recognition, Pattern Recognit. 50 (2016) 107–117.
[303]
Iosifidis A., Tefas A., Pitas I., Activity-based person identification using fuzzy representation and discriminant learning, IEEE Trans. Inf. Forensics Secur. 7 (2) (2011) 530–542.
[304]
Iosifidis A., Tefas A., Pitas I., Person identification from actions based on artificial neural networks, in: Symp. Comput. Intell. Biometrics Identity Manag. (CIBIM), IEEE, 2013, pp. 7–13.
[305]
Chen X., Kang Y., Chen Z., Multi-nonlinear multi-view locality-preserving projection with similarity learning for random cross-view gait recognition, Multimedia Syst. 26 (6) (2020) 727–744.
[306]
Ben X., Zhang P., Lai Z., Yan R., Zhai X., Meng W., A general tensor representation framework for cross-view gait recognition, Pattern Recognit. 90 (2019) 87–98.
[307]
X. Ben, C. Gong, P. Zhang, R. Yan, Q. Wu, W. Meng, Coupled bilinear discriminant projection for cross-view gait recognition, IEEE Trans. Circuits Syst. Video Technol.
[308]
Ben X., Gong C., Zhang P., Jia X., Wu Q., Meng W., Coupled patch alignment for matching cross-view gaits, IEEE Trans. Image Process. 28 (6) (2019) 3142–3157.
[309]
Martín-Félez R., Xiang T., Gait recognition by ranking, in: ECCV, Springer, 2012, pp. 328–341.
[310]
Chapelle O., Keerthi S.S., Efficient algorithms for ranking with svms, Inf. Retr. 13 (3) (2010) 201–215.
[311]
Huang G., Lu Z., Pun C.-M., Cheng L., Flexible gait recognition based on flow regulation of local features between key frames, IEEE Access 8 (2020) 75381–75392.
[312]
P. Limcharoen, N. Khamsemanan, C. Nattee, View-independent gait recognition using joint replacement coordinates (jrcs) and convolutional neural network, IEEE Trans. Inf. Forensics Secur.
[313]
Y. Wang, Z. Chen, Q.J. Wu, X. Rong, Deep mutual learning network for gait recognition, Multimed. Tools Appl.
[314]
Huang Y., Liang Y., Han Z., Du M., Two-stream convolutional network extracting effective spatiotemporal information for gait recognition, in: Int. Conf. Security Pattern Anal. Cybern., SPAC, IEEE, 2019, pp. 43–48.
[315]
A. Mehmood, M.A. Khan, M. Sharif, S.A. Khan, M. Shaheen, T. Saba, N. Riaz, I. Ashraf, Prosperous human gait recognition: an end-to-end system based on pre-trained cnn features selection, Multimed. Tools Appl.
[316]
Fan C., Peng Y., Cao C., Liu X., Hou S., Chi J., Huang Y., Li Q., He Z., Gaitpart: Temporal part-based model for gait recognition, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., CVPR, 2020, pp. 14225–14233.
[317]
Cao E., Cao K., Feng K., Wang J., Nmf based image sequence analysis and its application in gait recognition, CCF Trans. Pervasive Comput. Interact. (2020) 1–11.
[318]
M. Deng, T. Fan, J. Cao, S.-Y. Fung, J. Zhang, Human gait recognition based on deterministic learning and knowledge fusion through multiple walking views, J. Franklin Inst.
[319]
Tang J., Luo J., Tjahjadi T., Guo F., Robust arbitrary-view gait recognition based on 3d partial similarity matching, IEEE Trans. Image Process. 26 (1) (2017) 7–22.
[320]
Zhang Z., Troje N.F., View-independent person identification from human gait, Neurocomput. 69 (1–3) (2005) 250–256.
[321]
Luo J., Tjahjadi T., Gait recognition and understanding based on hierarchical temporal memory using 3d gait semantic folding, Sensors 20 (6) (2020) 1646.
[322]
X. Li, Y. Makihara, C. Xu, Y. Yagi, S. Yu, M. Ren, End-to-end model-based gait recognition, in: Asian Conf. Comput. Vis. (ACCV), 2020.
[323]
Nakajima H., Mitsugami I., Yagi Y., Depth-based gait feature representation, IPSJ Trans. Comput. Vis. Appl. 5 (2013) 94–98.
[324]
Kastaniotis D., Theodorakopoulos I., Economou G., Fotopoulos S., Gait based recognition via fusing information from euclidean and riemannian manifolds, Pattern Recognit. Lett. 84 (2016) 245–251.
[325]
Shiraga K., Makihara Y., Muramatsu D., Echigo T., Yagi Y., Geinet: View-invariant gait recognition using a convolutional neural network, in: IEEE Int. Conf. Biometr., IEEE, 2016, pp. 1–8.
[326]
Makihara Y., Sagawa R., Mukaigawa Y., Echigo T., Yagi Y., Gait recognition using a view transformation model in the frequency domain, in: ECCV, Springer, 2006, pp. 151–163.
[327]
Kusakunniran W., Wu Q., Zhang J., Li H., Support vector regression for multi-view gait recognition based on local motion feature selection, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., CVPR, IEEE, 2010, pp. 974–981.
[328]
Kusakunniran W., Wu Q., Li H., Zhang J., Proc. IEEE Int. Conf. Comput. Vis., ICCV, IEEE, 2009, pp. 1058–1064.
[329]
Yan C., Zhang B., Coenen F., Multi-attributes gait identification by convolutional neural networks, in: IEEE Int. Cong. Image Signal Process., CISP, IEEE, 2015, pp. 642–647.
[330]
Muramatsu D., Shiraishi A., Makihara Y., Yagi Y., Arbitrary view transformation model for gait person authentication, in: IEEE Int. Conf. Biometrics: Theory, Appl. Syst., BTAS, IEEE, 2012, pp. 85–90.
[331]
Hu M., Wang Y., Zhang Z., Little J.J., Huang D., View-invariant discriminative projection for multi-view gait-based human identification, IEEE Trans. Inf. Forensics Secur. 8 (12) (2013) 2034–2045.
[332]
Hu H., Enhanced gabor feature based classification using a regularized locally tensor discriminant model for multiview gait recognition, IEEE Trans. Circuits Syst. Video Technol. 23 (7) (2013) 1274–1286.
[333]
J. Zheng, X. Liu, C. Yan, J. Zhang, W. Liu, X. Zhang, T. Mei, Trand: Transferable neighborhood discovery for unsupervised cross-domain gait recognition, arXiv preprint arXiv:2102.04621.
[334]
Kusakunniran W., Wu Q., Zhang J., Li H., Cross-view and multi-view gait recognitions based on view transformation model using multi-layer perceptron, Pattern Recognit. Lett. 33 (7) (2012) 882–889.
[335]
W.S.C. Dave, S. Bingquan, Gait recognition for person tracking across camera network.
[336]
Khan M.H., Farid M.S., Zahoor M., Grzegorzek M., Cross-view gait recognition using non-linear view transformations of spatiotemporal features, in: Proc. Int. Conf. Image Process., ICIP, IEEE, 2018, pp. 773–777.
[337]
Li C., Min X., Sun S., Lin W., Tang Z., Deepgait: a learning deep convolutional representation for view-invariant gait recognition using joint bayesian, Appl. Sci. 7 (3) (2017) 210.
[338]
S. Yu, H. Chen, E.B.G. Reyes, N. Poh, Gaitgan: Invariant gait feature extraction using generative adversarial networks, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Workshop, CVPRW, 2017, pp. 532–539.
[339]
Muramatsu D., Shiraishi A., Makihara Y., Uddin M.Z., Yagi Y., Gait-based person recognition using arbitrary view transformation model, IEEE Trans. Image Process. 24 (1) (2015) 140–154.
[340]
Matovski D.S., Nixon M.S., Mahmoodi S., Carter J.N., The effect of time on gait recognition performance, IEEE Trans. Inf. Forensics Secur. 7 (2) (2011) 543–552.
[341]
Makihara Y., Matovski D.S., Nixon M.S., Carter J.N., Yagi Y., Gait recognition: Databases, representations, and applications, in: Wiley Encyclopedia of Electrical and Electronics Engineering, 1999, pp. 1–15.
[342]
Bouchrika I., Nixon M.S., Exploratory factor analysis of gait recognition, in: Int. Conf. Autom. Face Gesture Recognit, IEEE, 2008, pp. 1–6.
[343]
Yu T., Zou J.-H., Automatic human gait imitation and recognition in 3d from monocular video with an uncalibrated camera, Math. Probl. Eng. (2012).
[344]
Gabriel-Sanz S., Vera-Rodriguez R., Tome P., Fierrez J., Assessment of gait recognition based on the lower part of the human body, in: IEEE Int. Workshop Biometrics Forensics, IWBF, IEEE, 2013, pp. 1–4.
[345]
Li X., Chen Y., Gait recognition based on structural gait energy image, J. Comput. Inf. Sys. 9 (1) (2013) 121–126.
[346]
Lishani A.O., Boubchir L., Khalifa E., Bouridane A., Human gait recognition based on haralick features, Signal Image Video Process. 11 (6) (2017) 1123–1130.
[347]
Iwashita Y., Uchino K., Kurazume R., Gait-based person identification robust to changes in appearance, Sensors 13 (6) (2013) 7884–7901.
[348]
Islam M.S., Islam M.R., Akter M.S., Hossain M., Molla M., Window based clothing invariant gait recognition, in: Int. Conf. Adv. Elect. Eng., ICAEE, IEEE, 2013, pp. 411–414.
[349]
Dempster W.T., Gaughran G.R., Properties of body segments based on size and weight, Amer. J. Anatomy 120 (1) (1967) 33–54.
[350]
Hossain M.A., Makihara Y., Wang J., Yagi Y., Clothing-invariant gait identification using part-based clothing categorization and adaptive weight control, Pattern Recognit. 43 (6) (2010) 2281–2291.
[351]
Choudhury S.D., Tjahjadi T., Robust view-invariant multiscale gait recognition, Pattern Recognit. 48 (3) (2015) 798–811.
[352]
Verlekar T.T., Correia P.L., Soares L.D., View-invariant gait recognition system using a gait energy image decomposition method, IET Biometrics 6 (4) (2017) 299–306.
[353]
Aggarwal H., Vishwakarma D.K., Covariate conscious approach for gait recognition based upon zernike moment invariants, IEEE Trans. Cogn. Dev. Syst. 10 (2) (2017) 397–407.
[354]
Liang Y., Li C.-T., Guan Y., Hu Y., Gait recognition based on the golden ratio, EURASIP J. Image Video Process. 2016 (1) (2016) 22.
[355]
Bashir K., Xiang T., Gong S., Feature selection for gait recognition without subject cooperation, in: BMVC, 2008, pp. 1–10.
[356]
Rida I., Almaadeed S., Bouridane A., Improved gait recognition based on gait energy images, in: Proc. IEEE Int. Conf. Microelectronics, ICM, IEEE, 2014, pp. 40–43.
[357]
Rida I., Bouridane A., Marcialis G.L., Tuveri P., Improved human gait recognition, in: Int. Conf. Image Anal. Process, Springer, 2015, pp. 119–129.
[358]
Rokanujjaman M., Islam M.S., Hossain M.A., Islam M.R., Makihara Y., Yagi Y., Effective part-based gait identification using frequency-domain gait entropy features, Multimedia Tools Appl. 74 (9) (2015) 3099–3120.
[359]
Ghebleh A., Moghaddam M.E., Clothing-invariant human gait recognition using an adaptive outlier detection method, Multimedia Tools Appl. 77 (7) (2018) 8237–8257.
[360]
Whytock T., Belyaev A., Robertson N.M., On covariate factor detection and removal for robust gait recognition, Mach. Vis. Appl. 26 (5) (2015) 661–674.
[361]
Dupuis Y., Savatier X., Vasseur P., Feature subset selection applied to model-free gait recognition, Image Vis. Comput. 31 (8) (2013) 580–591.
[362]
Alotaibi M., Mahmood A., Reducing covariate factors of gait recognition using feature selection and dictionary-based sparse coding, Signal Image Video Process. 11 (6) (2017) 1131–1138.
[363]
Alotaibi M., Mahmood A., Reduction of gait covariate factors using feature selection and sparse dictionary learning, in: Int. Symp. Multimed., ISM, IEEE, 2016, pp. 337–340.
[364]
Rida I., Boubchir L., Al-Maadeed N., Al-Maadeed S., Bouridane A., Robust model-free gait recognition by statistical dependency feature selection and globality-locality preserving projections, in: Proc. IEEE Int. Conf. Telecommun. Signal Process., TSP, IEEE, 2016, pp. 652–655.
[365]
Rida I., Al Maadeed N., Marcialis G.L., Bouridane A., Herault R., Gasso G., Improved model-free gait recognition based on human body part, in: Biometric Security and Privacy, Springer, 2017, pp. 141–161.
[366]
Rida I., Al Maadeed S., Bouridane A., Unsupervised feature selection method for improved human gait recognition, in: Eur. Signal Process. Conf., EUSIPCO, IEEE, 2015, pp. 1128–1132.
[367]
Isaac E.R., Elias S., Rajagopalan S., Easwarakumar K., View-invariant gait recognition through genetic template segmentation, IEEE Signal Process. Lett. 24 (8) (2017) 1188–1192.
[368]
Song C., Huang Y., Huang Y., Jia N., Wang L., Gaitnet: An end-to-end network for gait based human identification, Pattern Recognit. 96 (2019).
[369]
Choudhury S.D., Tjahjadi T., Clothing and carrying condition invariant gait recognition based on rotation forest, Pattern Recognit. Lett. 80 (2016) 1–7.
[370]
Arora P., Srivastava S., Arora K., Bareja S., Improved gait recognition using gradient histogram gaussian image, Procedia Comput. Sci. 58 (2015) 408–413.
[371]
Liu J., Zheng N., Gait history image: a novel temporal template for gait recognition, in: Proc. IEEE Int. Conf. Multimed. and Expo, ICME, IEEE, 2007, pp. 663–666.
[372]
Verlekar T.T., Correia P.L., Soares L.D., Sparse error gait image: a new representation for gait recognition, in: IEEE Int. Workshop Biometrics Forensics, IWBF, IEEE, 2017, pp. 1–6.
[373]
Ma Q., Wang S., Nie D., Qiu J., Recognizing humans based on gait moment image, in: ACIS Int. Conf. Softw. Eng. Artif. Intell. Netw. Parallel/Distrib. Comput. (SNPD), Vol. 2, IEEE, 2007, pp. 606–610.
[374]
Shanableh T., Assaleh K., Al-Hajjaj L., Kabani A., Gait recognition system tailored for arab costume of the gulf region, in: Int. Symp. Signal Process. Inf. Technol., ISSPIT, IEEE, 2009, pp. 544–549.
[375]
Lee C.P., Tan A.W., Tan S.C., Gait probability image: An information-theoretic model of gait representation, J. Vis. Commun. Image Represent. 25 (6) (2014) 1489–1492.
[376]
Jeevan M., Jain N., Hanmandlu M., Chetty G., Gait recognition based on gait pal and pal entropy image, in: Proc. Int. Conf. Image Process. (ICIP), IEEE, 2013, pp. 4195–4199.
[377]
Hu R., Shen W., Wang H., Recursive spatiotemporal subspace learning for gait recognition, Neurocomput. 73 (10–12) (2010) 1892–1899.
[378]
Medikonda J., Madasu H., Panigrahi B.K., Information set based gait authentication system, Neurocomput. 207 (2016) 1–14.
[379]
Khan M.H., Farid M.S., Grzegorzek M., Spatiotemporal features of human motion for gait recognition, Signal Image Video Process. 13 (2) (2019) 369–377.
[380]
Atta R., Shaheen S., Ghanbari M., Human identification based on temporal lifting using 5/3 wavelet filters and radon transform, Pattern Recognit. 69 (2017) 213–224.
[381]
Al-Tayyan A., Assaleh K., Shanableh T., Decision-level fusion for single-view gait recognition with various carrying and clothing conditions, Image Vis. Comput. 61 (2017) 54–69.
[382]
Lee C.P., Tan A.W., Tan S.C., Gait recognition with transient binary patterns, J. Vis. Commun. Image Represent. 33 (2015) 69–77.
[383]
Arora P., Srivastava S., Gait recognition using gait gaussian image, in: Int. Conf. Signal Process. Integr. Netw., SPIN, IEEE, 2015, pp. 791–794.
[384]
Chaurasia P., Yogarajah P., Condell J., Prasad G., Fusion of random walk and discrete fourier spectrum methods for gait recognition, IEEE Trans. Human Mach. Syst. 47 (6) (2017) 751–762.
[385]
Chhatrala R., Jadhav D.V., Multilinear laplacian discriminant analysis for gait recognition, IET Comput. Vis. 11 (2) (2016) 153–160.
[386]
Mu Y., Tao D., Biologically inspired feature manifold for gait recognition, Neurocomput. 73 (4–6) (2010) 895–902.
[387]
Almohammad M.S., Salama G.I., Mahmoud T.A., Human identification system based on feature level fusion using face and gait biometrics, in: Int. Conf. Eng. Technol., ICET, IEEE, 2012, pp. 1–5.
[388]
Hofmann M., Schmidt S.M., Rajagopalan A.N., Rigoll G., Combined face and gait recognition using alpha matte preprocessing, in: IAPR Int. Conf. Biometrics, ICB, IEEE, 2012, pp. 390–395.
[389]
Shakhnarovich G., Lee L., Darrell T., Integrated face and gait recognition from multiple views, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., CVPR, Vol. 1, IEEE, 2001, I–I.
[390]
Li X., Makihara Y., Xu C., Yagi Y., Ren M., Gait recognition via semi-supervised disentangled representation learning to identity and covariate features, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., CVPR, 2020, pp. 13309–13319.
[391]
Sharma H., Grover J., Human identification based on gait recognition for multiple view angles, Int. J. Intell. Robot. Appl. 2 (3) (2018) 372–380.
[392]
Li X., Makihara Y., Xu C., Muramatsu D., Yagi Y., Ren M., Gait energy response functions for gait recognition against various clothing and carrying status, Appl. Sci. 8 (8) (2018) 1380.
[393]
Yu S., Chen H., Wang Q., Shen L., Huang Y., Invariant feature extraction for gait recognition using only one uniform model, Neurocomput. 239 (2017) 81–93.
[394]
Moustakidis S., Theocharis J., Giakas G., Feature extraction based on a fuzzy complementary criterion for gait recognition using grf signals, in: 17th Mediterranean Conf. Control Autom, IEEE, 2009, pp. 1456–1461.
[395]
Veeraraghavan A., Srivastava A., Roy-Chowdhury A.K., Chellappa R., Rate-invariant recognition of humans and their activities, IEEE Trans. Image Process. 18 (6) (2009) 1326–1339.
[396]
Lee S., Liu Y., Collins R., Shape variation-based frieze pattern for robust gait recognition, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., CVPR, IEEE, 2007, pp. 1–8.
[397]
Cho N.-G., Yuille A., Lee S.-W., Self-occlusion robust 3d human pose tracking from monocular image sequence, in: Int. Conf. Syst. Man, Cybern., IEEE, 2012, pp. 254–257.
[398]
Tang S., Andriluka M., Schiele B., Detection and tracking of occluded people, Int. J. Comput. Vis. 110 (1) (2014) 58–69.
[399]
G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., CVPR, 2017, pp. 4700–4708.
[400]
Li X., Makihara Y., Xu C., Yagi Y., Ren M., Gait recognition invariant to carried objects using alpha blending generative adversarial networks, Pattern Recognit. (2020).
[401]
M.A. Khan, S.S.S. Fathima, B.A. Stepnila, A.M.I. Ali, Joint intensity transformer network for gait recognition robust against clothing and carrying status, Mater. Today: Proc.
[402]
M.H. Khan, M.S. Farid, M. Grzegorzek, Using a generic model for codebook-based gait recognition algorithms, in: IEEE Int. Workshop Biometrics Forensics, IWBF.
[403]
Hofmann M., Sural S., Rigoll G., Gait recognition in the presence of occlusion: A new dataset and baseline algorithms, 2011.
[404]
Roy A., Chattopadhyay P., Sural S., Mukherjee J., Rigoll G., Modelling, synthesis and characterisation of occlusion in videos, IET Comput. Vis. 9 (6) (2015) 821–830.
[405]
Ortells J., Mollineda R.A., Mederos B., Martín-Félez R., Gait recognition from corrupted silhouettes: a robust statistical approach, Mach. Vis. Appl. 28 (1–2) (2017) 15–33.
[406]
Chen X., Weng J., Lu W., Xu J., Multi-gait recognition based on attribute discovery, IEEE Trans. Pattern Anal. Mach. Intell. 40 (7) (2017) 1697–1710.
[407]
Chen X., Yang T., Xu J., Multi-gait identification based on multilinear analysis and multi-target tracking, Multimedia Tools Appl. 75 (11) (2016) 6505–6532.
[408]
D. Das, A. Agarwal, P. Chattopadhyay, L. Wang, Rgait-net: An effective network for recovering missing information from occluded gait cycles, arXiv preprint arXiv:1912.06765.
[409]
Öberg T., Karsznia A., Öberg K., Basic gait parameters: reference data for normal subjects, 10-79 years of age, J. Rehab. Res. Develop. 30 (1993) 210–210.
[410]
Han S., The influence of walking speed on gait patterns during upslope walking, J. Med. Imaging Health Inform. 5 (1) (2015) 89–92.
[411]
R. Tanawongsuwan, A. Bobick, A study of human gaits across different speeds, Tech. Rep. Georgia Tech.
[412]
Tanawongsuwan R., Bobick A., Performance analysis of time-distance gait parameters under different speeds, in: Int. Conf. Audio Video-Based Biometric Pers. Authentication, Springer, 2003, pp. 715–724.
[413]
Tanawongsuwan R., Bobick A., Modelling the effects of walking speed on appearance-based gait recognition, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., CVPR, Vol. 2, IEEE, 2004, II–II.
[414]
Mason J.E., Woungang I., et al., Machine Learning Techniques for Gait Biometric Recognition, Springer, 2016.
[415]
Tsuji A., Makihara Y., Yagi Y., Silhouette transformation based on walking speed for gait identification, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), IEEE, 2010, pp. 717–722.
[416]
Chiu H.-J., Lin C.-H., Li T.-H.S., Gait recognition using histogram of oriented gradient and self-organizing feature map classification in variable walking speed, in: Int. Conf. Fuzzy Theory Appl., IFUZZY, IEEE, 2019, pp. 283–286.
[417]
Kovač J., Štruc V., Peer P., Frame–based classification for cross-speed gait recognition, Multimedia Tools Appl. 78 (5) (2019) 5621–5643.
[418]
Iwashita Y., Kakeshita M., Sakano H., Kurazume R., Making gait recognition robust to speed changes using mutual subspace method, in: Int. Conf. Robot. Automat., ICRA, IEEE, 2017, pp. 2273–2278.
[419]
Iwashita Y., Sakano H., Kurazume R., Gait recognition robust to speed transition using mutual subspace method, in: Int. Conf. Image Anal. Process, Springer, 2015, pp. 141–149.
[420]
Zeng W., Wang C., Gait recognition across different walking speeds via deterministic learning, Neurocomput. 152 (2015) 139–150.
[421]
Kovač J., Peer P., Human skeleton model based dynamic features for walking speed invariant gait recognition, Math. Probl. Eng. (2014).
[422]
Muaaz M., Nickel C., Influence of different walking speeds and surfaces on accelerometer-based biometric gait recognition, in: Proc. IEEE Int. Conf. Telecommun. Signal Process., TSP, IEEE, 2012, pp. 508–512.
[423]
Liu Z., Sarkar S., Improved gait recognition by gait dynamics normalization, IEEE Trans. Pattern Anal. Mach. Intell. 28 (6) (2006) 863–876.
[424]
Lythgo N., Wilson C., Galea M., Basic gait and symmetry measures for primary school-aged children and young adults whilst walking barefoot and with shoes, Gait Posture 30 (4) (2009) 502–506.
[425]
Gafurov D., Snekkenes E., Bours P., Improved gait recognition performance using cycle matching, in: Int. Conf. Adv. Inf. Netw. Appl. Workshops, IEEE, 2010, pp. 836–841.
[426]
Takeda T., Kuramoto K., Kobashi S., Hata Y., A challenge to biometrics by sole pressure while walking, in: Int. Conf. Fuzzy Sys. (FUZZ-IEEE), IEEE, 2011, pp. 1430–1435.
[427]
Connor P.C., Comparing and combining underfoot pressure features for shod and unshod gait biometrics, in: Int. Symp. Technol. Homeland Secur., HST, IEEE, 2015, pp. 1–7.
[428]
Matovski D.S., Nixon M.S., Mahmoodi S., Carter J.N., The effect of time on the performance of gait biometrics, in: IEEE Int. Conf. Biometrics: Theory, Appl. Syst., BTAS, IEEE, 2010, pp. 1–6.
[429]
Veres G.V., Nixon M.S., Carter J.N., Modelling the time-variant covariates for gait recognition, in: Int. Conf. Audio Video-Based Biometric Pers. Authentication, Springer, 2005, pp. 597–606.
[430]
Jung J.-W., Bien Z., Sato T., Person recognition method using sequential walking footprints via overlapped foot shape and center-of-pressure trajectory, IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 87 (6) (2004) 1393–1400.
[431]
Pataky T.C., Mu T., Bosch K., Rosenbaum D., Goulermas J.Y., Gait recognition: highly unique dynamic plantar pressure patterns among 104 individuals, J. R. Soc. Interface 9 (69) (2012) 790–800.
[432]
Vera-Rodriguez R., Mason J.S., Fierrez J., Ortega-Garcia J., Comparative analysis and fusion of spatiotemporal information for footstep recognition, IEEE Trans. Pattern Anal. Mach. Intell. 35 (4) (2012) 823–834.
[433]
Guan Y., Li C.-T., Choudhury S.D., Robust gait recognition from extremely low frame-rate videos, in: IEEE Int. Workshop Biometrics Forensics, IWBF, IEEE, 2013, pp. 1–4.
[434]
Mori A., Makihara Y., Yagi Y., Gait recognition using period-based phase synchronization for low frame-rate videos, in: Proc. Int. Conf. Pattern Recognit., ICPR, IEEE, 2010, pp. 2194–2197.
[435]
Makihara Y., Mori A., Yagi Y., Temporal super resolution from a single quasi-periodic image sequence based on phase registration, in: Asian Conf. Comput. Vis., ACCV, Springer, 2010, pp. 107–120.
[436]
Hausdorff J.M., Mitchell S.L., Firtion R., Peng C.-K., Cudkowicz M.E., Wei J.Y., Goldberger A.L., Altered fractal dynamics of gait: reduced stride-interval correlations with aging and huntington’s disease, J. Appl. Physiol. 82 (1) (1997) 262–269.
[437]
Amjad F., Khan M.H., Nisar M.A., Farid M.S., Grzegorzek M., A comparative study of feature selection approaches for human activity recognition using multimodal sensory data, Sensors 21 (7) (2021) 2368.
[438]
Wold S., Esbensen K., Geladi P., Principal component analysis, Chemometr. Intell. Lab. Syst. 2 (1–3) (1987) 37–52.
[439]
BenAbdelkader C., Cutler R., Davis L., Motion-based recognition of people in eigengait space, in: Int. Conf. Autom. Face Gesture Recognit, IEEE, 2002, pp. 267–272.
[440]
Han J., Bhanu B., Roy-Chowdhury A.K., A study on view-insensitive gait recognition, in: Proc. Int. Conf. Image Process., ICIP, Vol. 3, IEEE, 2005, pp. III–297.
[441]
Balakrishnama S., Ganapathiraju A., Linear discriminant analysis-a brief tutorial, in: Institute for Signal and Information Processing, Vol. 18, 1998, pp. 1–8.
[442]
Hongye X., Zhuoya H., Gait recognition based on gait energy image and linear discriminant analysis, in: Int. Conf. Signal Process. Commun. Comput., ICSPCC, IEEE, 2015, pp. 1–4.
[443]
Cheng Q., Fu B., Chen H., Gait recognition based on pca and lda, in: Int. Symp. Comput. Sci. Comput. Technol., ISCSCI, Citeseer, 2009, p. 124.
[444]
Srinivas M., Patnaik L.M., Genetic algorithms: A survey, Computer 27 (6) (1994) 17–26.
[445]
Ahmed F., Paul P.P., Gavrilova M.L., Dtw-based kernel and rank-level fusion for 3d gait recognition using kinect, Vis. Comput. 31 (6–8) (2015) 915–924.
[446]
Yeoh T., Zapotecas-Martínez S., Akimoto Y., Aguirre H., Tanaka K., Genetic algorithm assisted by a svm for feature selection in gait classification, in: Int. Symp. Intell. Signal Process. Commun. Sys., ISPACS, IEEE, 2014, pp. 191–195.
[447]
Yang L., Chew C.-M., Poo A.N., Zielinska T., Adjustable bipedal gait generation using genetic algorithm optimized fourier series formulation, in: Int. Conf. Intell. Robot. Syst., IEEE, 2006, pp. 4435–4440.
[448]
Huang S., Elgammal A., Lu J., Yang D., Cross-speed gait recognition using speed-invariant gait templates and globality–locality preserving projections, IEEE Trans. Inf. Forensics Secur. 10 (10) (2015) 2071–2083.
[449]
Nandy A., Chakraborty P., A new paradigm of human gait analysis with kinect, in: Proc. Int. Conf. Contemporary Comput. (IC3), IEEE, 2015, pp. 443–448.
[450]
A. Sinha, K. Chakravarty, B. Bhowmick, et al. Person identification using skeleton information from kinect, in: Proc. Int. Conf. Adv. Comput.-Human Interact. 2013, pp. 101–108.
[451]
Fan R.-E., Chang K.-W., Hsieh C.-J., Wang X.-R., Lin C.-J., Liblinear: A library for large linear classification, J. Mach. Learn. Res. 9 (Aug) (2008) 1871–1874.
[452]
Eden M.R., Ierapetritou M.G., Towler G.P., Deep learning based soft sensor and its application on a pyrolysis reactor for compositions predictions of gas phase components, in: 13th International Symposium on Process Systems Engineering, in: Computer Aided Chemical Engineering, Vol. 44, Elsevier, 2018, pp. 2245–2250.
[453]
H. Kagaya, K. Aizawa, M. Ogawa, Food detection and recognition using convolutional neural network, in: Proceedings of the 22nd ACM international conference on Multimedia, 2014, pp. 1085–1088.
[454]
Liu F., Lin G., Shen C., Crf learning with cnn features for image segmentation, Pattern Recognit. 48 (10) (2015) 2983–2992.
[455]
Sehgal A., Kehtarnavaz N., A convolutional neural network smartphone app for real-time voice activity detection, IEEE Access 6 (2018) 9017–9026.
[456]
Alotaibi M., Mahmood A., Improved gait recognition based on specialized deep convolutional neural network, Comput. Vis. Image Underst. 164 (2017) 103–110.
[457]
Wu Z., Huang Y., Wang L., Wang X., Tan T., A comprehensive study on cross-view gait based human identification with deep cnns, IEEE Trans. Pattern Anal. Mach. Intell. 39 (2) (2016) 209–226.
[458]
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556.
[459]
Faris H., Aljarah I., Mirjalili S., Chapter 28 - evolving radial basis function networks using moth–flame optimizer, in: P. Samui V.E. Balas (Ed.), Handbook of Neural Computation, 2017, pp. 537–550. https://doi.org/10.1016/B978-0-12-811318-9.00028-4, URL, http://www.sciencedirect.com/science/article/pii/B9780128113189000284.
[460]
Theodoridis S., Koutroumbas K., et al., Pattern recognition, IEEE Trans. Neural Netw. 19 (2) (2008) 376.
[461]
Cimolin V., Galli M., Summary measures for clinical gait analysis: a literature review, Gait Posture 39 (4) (2014) 1005–1010.
[462]
Xu G., Zhang Y., Begg R., Mining gait pattern for clinical locomotion diagnosis based on clustering techniques, in: International Conference on Advanced Data Mining and Applications, Springer, 2006, pp. 296–307.
[463]
Phinyomark A., Osis S., Hettinga B.A., Ferber R., Kinematic gait patterns in healthy runners: A hierarchical cluster analysis, J. Biomech. 48 (14) (2015) 3897–3904.
[464]
Defence advanced research projects agency (darpa)- human identification at a distance, http://www.darpa.mil/, (Online; Accessed 19 June 2018).
[465]
University of southampton (soton) - database for human id at distance, 2005, http://www.gait.ecs.soton.ac.uk/database/, (Online; Accessed 19 June 2018).
[466]
S. Yu, et al. A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition, in: Proc. Int. Conf. Pattern Recognit., ICPR, Vol. 4, 2006, pp. 441–444.
[467]
Zheng S., Huang K., Tan T., Tao D., A cascade fusion scheme for gait and cumulative foot pressure image recognition, Pattern Recognit. 45 (10) (2012) 3603–3610.
[468]
Makihara Y., et al., The ou-isir gait database comprising the treadmill dataset, IPSJ Tran. Comput. Vis. Appl. 4 (2012) 53–62.
[469]
Iwama H., Okumura M., Makihara Y., Yagi Y., The ou-isir gait database comprising the large population dataset and performance evaluation of gait recognition, IEEE Trans. Inf. Forensics Security 7 (5) (2012) 1511–1521.
[470]
Takemura N., Makihara Y., Muramatsu D., Echigo T., Yagi Y., Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition, IPSJ Trans. Comput. Vis. Appl. 10 (1) (2018) 4.
[471]
S. h. i. at a distance database, southampton human id at a distance database, 2005, http://www.gait.ecs.soton.ac.uk/database/, (Online; Accessed 01 March 2018).
[472]
López-Fernández D., et al., The AVA multi-view dataset for gait recognition, in: Activity Monitoring By Multiple Distributed Sensing, Springer International Publishing, 2014, pp. 26–39.
[473]
Pala F., Satta R., Fumera G., Roli F., Multimodal person reidentification using rgb-d cameras, IEEE Trans. Circuits Syst. Video Technol. 26 (4) (2016) 788–799.
[474]
HID-Umd, university of maryland database (umd), 2001, http://www.umiacs.umd.edu/labs/pirl/hid/data.html, (Online; Accessed 01 March 2018).
[475]
G. c. of computing, Georgia tech. database (gtd), 2001, http://www.cc.gatech.edu/cpl/projects/hid/, (Online; Accessed 01 March 2018).
[476]
Y. Iwashita, R. Baba, K. Ogawara, R. Kurazume, Person identification from spatio-temporal 3d gait, in: Int. Conf. Emerg. Secur. Technol. (EST), UK, 2010, pp. 30–35.
[477]
Makihara Y., et al., Individuality-preserving silhouette extraction for gait recognition, IPSJ Trans. Comput. Vis. Appl. 7 (2015) 74–78.
[478]
Singh J.P., Arora S., Jain S., SoM U.P.S., A multi-gait dataset for human recognition under occlusion scenario, in: Int. Conf. Issues Challenges Intell. Comput. Tech., ICICT, Vol. 1, IEEE, 2019, pp. 1–6.
[479]
Uddin M.Z., Ngo T.T., Makihara Y., Takemura N., Li X., Muramatsu D., Yagi Y., The ou-isir large population gait database with real-life carried object and its performance evaluation, IPSJ Trans. Comput. Vis. Appl. 10 (1) (2018) 5.
[480]
Y. Makihara, A. Suzuki, D. Muramatsu, X. Li, Y. Yagi, Joint intensity and spatial metric learning for robust gait recognition, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., CVPR, 2017, p. (Accepted).
[481]
Xu C., Makihara Y., Ogi G., Li X., Yagi Y., Lu J., The ou-isir gait database comprising the large population dataset with age and performance evaluation of age estimation, IPSJ Trans. Comput. Vis. Appl. 9 (24) (2017) 1–14.
[482]
Nambiar A., Bernardino A., Nascimento J.C., Fred A., Context-aware person re-identification in the wild via fusion of gait and anthropometric features, in: Int. Conf. Autom. Face Gesture Recognit, IEEE, 2017, pp. 973–980.
[483]
Yun Y., Kim H.-C., Shin S.Y., Lee J., Deshpande A.D., Kim C., Statistical method for prediction of gait kinematics with gaussian process regression, J. Biomech. 47 (1) (2014) 186–192.
[484]
Borràs R., Lapedriza À., Igual L., Depth information in human gait analysis: an experimental study on gender recognition, in: Int. Conf. Image Anal. Recognit., Springer, 2012, pp. 98–105.
[485]
Mahyuddin A.I., Mihradi S., Dirgantara T., Moeliono M., Prabowo T., Development of indonesian gait database using 2d optical motion analyzer system, ASEAN Eng. J. 2 (2) (2012) 62–72.
[486]
Iwashita Y., Ogawara K., Kurazume R., Identification of people walking along curved trajectories, in: Pattern Recognit. Lett., Elsevier, 2014, pp. 60–69.
[487]
Y. Iwashita, R. Kurazume, A. Stoica, Gait identification using invisible shadows: Robustness to appearance changes, in: Int. Conf. Emerg. Secur. Technol. (EST), UK, 2014, pp. 34–39.
[488]
Yin Y., Liu L., Sun X., Sdumla-hmt: a multimodal biometric database, in: Chin. Conf. Biometric Recognit, Springer, 2011, pp. 260–268.
[489]
Sigal L., Balan A.O., Black M.J., Humaneva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion, Int. J. Comput. Vis. 87 (1–2) (2010) 4.
[490]
L. Sigal, M.J. Black, Humaneva: Synchronized Video and Motion Capture Dataset for Evaluation of Articulated Human Motion, Brown Univertsity, TR 120.
[491]
Zhang D., Wang Y., Investigating the separability of features from different views for gait based gender classification, in: Proc. Int. Conf. Pattern Recognit., ICPR, IEEE, 2008, pp. 1–4.
[492]
H. Rahmani, A. Mian, Learning a non-linear knowledge transfer model for cross-view action recognition, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., CVPR, 2015, pp. 2458–2466.
[493]
M.H. Khan, M.S. Farid, M. Grzegorzek, A non-linear view transformations model for cross-view gait recognition, IEEE Trans. Cybern.
[494]
R. Panda, A. Bhuiyan, V. Murino, A.K. Roy-Chowdhury, Unsupervised adaptive re-identification in open world dynamic camera networks, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., CVPR, 2017, pp. 7054–7063.
[495]
Kale A., RoyChowdhury A.K., Chellappa R., Fusion of gait and face for human identification, in: Proc. Int. Conf. Acoust. Speech Signal Process.(ICASSP). Vol. 5, IEEE, 2004, pp. V–901.
[496]
Kimura T., Makihara Y., Muramatsu D., Yagi Y., Quality-dependent score-level fusion of face, gait, and the height biometrics, Inf. Media Technol. 9 (3) (2014) 346–350.
[497]
Geng X., Smith-Miles K., Wang L., Li M., Wu Q., Context-aware fusion: A case study on fusion of gait and face for human identification in video, Pattern Recognit. 43 (10) (2010) 3660–3673.
[498]
Castro F.M., Marín-Jiménez M.J., Guil N., Empirical study of audio-visual features fusion for gait recognition, in: Int. Conf. Comput. Anal. Images Patterns, Springer, 2015, pp. 727–739.
[499]
Castro F.M., Marín-Jiménez M.J., Guil N., Multimodal features fusion for gait, gender and shoes recognition, Mach. Vis. Appl. (2016) 1–16.
[500]
Derlatka M., Bogdan M., Fusion of static and dynamic parameters at decision level in human gait recognition, in: Int. Conf. Pattern Recognit. Machine Intell., Springer, 2015, pp. 515–524.
[501]
Lee H., Lee B., Jung J.-W., Hong S., Kim E., Human biometric identification through integration of footprint and gait, Int. J. Control Auto. Syst. 11 (4) (2013) 826–833.
[502]
Tripathi R.K., Jalal A.S., Agrawal S.C., Suspicious human activity recognition: a review, Artif. Intell. Rev. 50 (2) (2018) 283–339.
[503]
Tabatabaei S.A.H., Delforouzi A., Khan M.H., Wesener T., Grzegorzek M., Automatic detection of the cracks on the concrete railway sleepers, Int. J. Pattern Recognit. Artif. Intell. 33 (09) (2019).
[504]
Farid M.S., Lucenteforte M., Khan M.H., Grangetto M., Semi-automatic segmentation of scattered and distributed objects, in: International Conference on Computer Recognition Systems, Springer, 2017, pp. 110–119.
[505]
Rathi Y., Vaswani N., Tannenbaum A., Yezzi A., Tracking deforming objects using particle filtering for geometric active contours, IEEE Trans. Pattern Anal. Mach. Intell. 29 (8) (2007) 1470–1475.

Cited By

View all

Index Terms

  1. Vision-based approaches towards person identification using gait
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Computer Science Review
        Computer Science Review  Volume 42, Issue C
        Nov 2021
        180 pages

        Publisher

        Elsevier Science Publishers B. V.

        Netherlands

        Publication History

        Published: 01 November 2021

        Author Tags

        1. Biometrics
        2. Gait
        3. Person recognition
        4. Visual surveillance

        Qualifiers

        • Review-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 15 Sep 2024

        Other Metrics

        Citations

        Cited By

        View all

        View Options

        View options

        Get Access

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media