skip to main content
research-article

Numerical effects on notch fatigue strength assessment of non-welded and welded components

Published: 15 October 2017 Publication History

Abstract

Comparison of numerical and analytical notch fatigue strength assessment.Element type and mesh density reveal a significant impact on numerical results.Recommendations to ensure a proper stress-based fatigue design are provided. Local fatigue strength assessment based on threshold values obtained by linear-elastic notch stress calculation is commonly utilized due to its applicability to complex geometries with an acceptable effort. As the result of a finite element computation is affected by the element type and mesh refinement, this paper investigates the numerical influence on the notch stress based fatigue strength assessment of non-welded and welded components. Based on extensive finite element studies employing the software package Abaqus it is concluded that quadratic shape functions with a number of sixteen for non-welded parts and twelve elements over a semicircle for welded joints should be at least applied to minimize the numerical impact.

References

[1]
Nowack H, Schulz U. Significance of finite element methods (FEM) in fatigue analysis. In: Proceedings of the sixth international fatigue congress, Berlin; 1996. p. 1057165.
[2]
D. Radaj, Review of fatigue strength assessment of nonwelded and welded structures based on local parameters, Int J Fatigue, 18 (1996) 153-170.
[3]
M. Ciavarella, G. Meneghetti, On fatigue limit in the presence of notches: classical vs. recent unified formulations, Int J Fatigue, 26 (2004) 289-298.
[4]
H. Neuber, ber die Bercksichtigung der Spannungskonzentration bei Festigkeitsberechnungen, Konstruktion, 7 (1968) 245-251.
[5]
H.P. Gnser, Some notes on gradient, volumetric and weakest link concepts in fatigue, Comput Mater Sci, 44 (2008) 230-239.
[6]
D. Radaj, P. Lazzarin, F. Berto, Generalised Neuber concept of fictitious notch rounding, Int J Fatigue, 51 (2013) 105-115.
[7]
F. Berto, P. Lazzarin, D. Radaj, Fictitious notch rounding concept applied to sharp V-notches: evaluation of the microstructural support factor for different failure hypotheses. Part I: Basic stress equations, Eng Fract Mech, 75 (2008) 3060-3072.
[8]
F. Berto, P. Lazzarin, D. Radaj, Fictitious notch rounding concept applied to sharp V-notches: evaluation of the microstructural support factor for different failure hypotheses Part II: Microstructural support analysis, Eng Fract Mech, 76 (2009) 1151-1175.
[9]
F. Berto, P. Lazzarin, Fictitious notch rounding approach of pointed V-notch under in-plane shear, Theor Appl Fract Mech, 53 (2010) 127-135.
[10]
F. Berto, O. Fergani, A review of the notch rounding approach under in plane mixed mode loading, Int J Fatigue, 101 (2017) 127-136.
[11]
J. Baumgartner, H. Schmidt, E. Ince, T. Melz, K. Dilger, Fatigue assessment of welded joints using stress averaging and critical distance approaches, Weld World, 59 (2015) 731-742.
[12]
D. Radaj, State-of-the-art review on extended stress intensity factor concepts, Fatigue Fract Eng Mater Struct, 37 (2014) 1-28.
[13]
D. Radaj, State-of-the-art review on the local strain energy density concept and its relation to the J-integral and peak stress method, Fatigue Fract Eng Mater Struct, 38 (2015) 2-28.
[14]
P. Lazzarin, S. Filippi, A generalized stress intensity factor to be applied to rounded V-shaped notches, Int J Sol Struct, 43 (2006) 2461-2478.
[15]
F. Berto, P. Lazzarin, A review of the volume-based strain energy density approach applied to V-notches and welded structures, Theor Appl Fract Mech, 52 (2009) 183-194.
[16]
P. Lazzarin, F. Berto, F.J. Gomez, M. Zappalorto, Some advantages derived from the use of the strain energy density over a control volume in fatigue strength assessments of welded joints, Int J Fatigue, 30 (2008) 1345-1357.
[17]
A. Spaggiari, D. Castagnettia, E. Dragonia, S. Bulleri, Fatigue life prediction of notched components: a comparison between the theory of critical distance and the classical stress gradient approach, Proc Eng, 10 (2011) 2755-2767.
[18]
M. Niessner, T. Seeger, J. Hohe, D. Siegele, Festigkeitsberechnung scharf gekerbter Bauteile, Mat-wiss Werkst, 34 (2003) 797-811.
[19]
W. Eichlseder, Fatigue analysis by local stress concept based on finite element results, Comput Struct, 80 (2002) 2109-2113.
[20]
Steinwender G, Gaier C, Unger B. Fatigue simulation during the design process of vehicle structures. In: Proceedings of the ISATA conference, paper 99SI011, Vienna; 1999.
[21]
A. Dutt, Effect of mesh size on finite element analysis of beam, Int J Mech Eng, 2 (2015) 8-10.
[22]
S. More, S. Bindu, Effect of mesh size on finite element analysis of plate structure, Int J Eng Sci Innov Tech, 4 (2015) 181-185.
[23]
V. Cojocaru, Z. Korka, C.O. Miclosina, Influence of the mesh parameters on stresses and strains in FEM analysis of a gear housing, An Univ Eftimie Murgu Resita, 2 (2013) 47-52.
[24]
S. Thohura, S. Islam, Study of the effect of finite element mesh quality on stress concentration factor of plates with holes, Int J Eng Innov Tech, 3 (2013) 82-88.
[25]
K. Ho-Le, Finite element mesh generation methods: a review and classification, Comput Aided Des, 20 (1988) 27-38.
[26]
E. Wei, J. Rudolph, J. Hoffmann, Vernetzungskritieren fr kerbbeanspruchungsorientierte FE-Analysen, Tech Mech, 19 (1999) 103-114.
[27]
A. Francavilla, C.V. Ramakrishnan, O.C. Zienkiewicz, Optimization of shape to minimize stress concentration, J Strain Anal, 10 (1975) 63-70.
[28]
S.P. Timoshenko, S. Woinowsky-Krieger, Theory of plates and shells, McGraw-Hill, London, 1959.
[29]
I.M. Smith, W. Duncan, The effectiveness of nodal continuities in finite element analysis of thin rectangular and skew plates in bending, Int J Numer Mech Eng, 2 (1970) 253-258.
[30]
A. Peano, Hierarchies of conforming finite elements for plane elasticity and plate bending, Comput Math Appl, 2 (1976).
[31]
E. Bellenger, P. Coorevits, Adaptive mesh refinement for the control of cost and quality in finite element analysis, Finite Elem Anal Des, 41 (2005) 1413-1440.
[32]
L. Huang, G. Zhao, X. Ma, Z. Wang, Incorporating improved refinement techniques for a grid-based geometrically-adaptive hexahedral mesh generation algorithm, Adv Eng Softw, 64 (2013) 20-32.
[33]
G. Nicolas, T. Fouquet, Adaptive mesh refinement for conformal hexahedral meshes, Finite Elem Anal Des, 67 (2013) 1-12.
[34]
A.R. Khoei, S.A. Gharehbaghi, The superconvergence patch recovery technique and data transfer operators in 3D plasticity problems, Finite Elem Anal Des, 43 (2007) 630-648.
[35]
O.C. Zienkiewicz, J.Z. Zhu, The superconvergent patch recovery (SPR) and adaptive finite element refinement, Comput Meth Appl Mech Eng, 101 (1992) 207-224.
[36]
Abaqus Analysis Users Manual. Version 6.14 2007. <www.simulia.com>.
[37]
H. Neuber, Kerbspannungslehre, Springer-Verlag, 2001.
[38]
Dannbauer H, Eichlseder W, Steinwender G, Unger B. Numerical simulation of notches application to non-welded metallic structures. DVM-Arbeitskreis 2000. Report 127:121133.
[39]
Bjorkman GS, Piotter JM. Finite element mesh considerations for reduced integration elements. In: ASME 2008 pressure vessels and piping conference; 2008. p. 17982.
[40]
S. Reese, P. Wriggers, A stabilization technique to avoid hourglassing in finite elasticity, Int J Numer Meth Eng, 48 (2000) 79-109.
[41]
E. Siebel, M. Stieler, Ungleichfrmige Spannungsverteilung bei schwingender Beanspruchung, VDI-Zeitschrift, 97 (1955) 121-126.
[42]
Stieler M. Untersuchungen ber die Dauerschwingfestigkeit metallischer Bauteile bei Raumtemperatur. PhD-thesis; 1954.
[43]
FKM-guideline. Analytical strength assessment of components in mechanical engineering. 6th ed. VDMA Frankfurt; 2003.
[44]
S.A. McKelvey, Y.L. Lee, M.E. Barkey, Stress-based uniaxial fatigue analysis using methods described in FKM-guideline, J Fail Anal Preven, 12 (2012) 445-484.
[45]
nCode DesignLife Theory Guide. Version 9.1 2013. <www.hbm.com/ncode>.
[46]
Femfat Basic Theory-Manual. Version 5.0 2014. <www.femfat.com>.
[47]
Eichlseder W, Leitner H. Influence of stress gradient on S/N-curve. In: Proceedings of the new trends in fatigue and fracture conference, Metz; 2002.
[48]
DIN EN 10025-2. Hot rolled products of structural steels Part 2: Technical delivery conditions for non-alloy structural steels; 2005.
[49]
M. Leitner, M. Stoschka, W. Eichlseder, Fatigue enhancement of thin-walled, high-strength steel joints by high-frequency mechanical impact treatment, Weld World, 58 (2014) 29-39.
[50]
A. Hobbacher, IIW recommendations for fatigue design of welded joints and components, WRC bulletin 520, The Welding Research Council, New York, 2009.
[51]
C.M. Sonsino, W. Fricke, F. de Bruyne, A. Hoppe, A. Ahmadi, G. Zhang, Notch stress concepts for the fatigue assessment of welded joints background and applications, Int J Fatigue, 34 (2012) 2-16.
[52]
T. Bruder, K. Strzel, J. Baumgartner, H. Hanselka, Evaluation of nominal and local stress based approaches for the fatigue assessment of seam welds, Int J Fatigue, 34 (2012) 86-102.
[53]
W. Fricke, IIW recommendations for the fatigue assessment of welded structures by notch stress analysis, Woodhead Publishing, 2009.
[54]
J. Baumgartner, T. Bruder, An efficient meshing approach for the calculation of notch stresses, Weld World, 57 (2013) 137-145.
[55]
W. Fricke, Round-robin study on stress analysis for the effective notch stress approach, Weld World, 51 (2007) 68-79.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Computers and Structures
Computers and Structures  Volume 191, Issue C
October 2017
167 pages

Publisher

Pergamon Press, Inc.

United States

Publication History

Published: 15 October 2017

Author Tags

  1. Element type
  2. Finite element analysis
  3. Linear-elastic computation
  4. Mesh refinement
  5. Notch stress approach
  6. Shape function

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 08 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media