skip to main content
research-article

Unsupervised seizure identification on EEG

Published: 01 March 2022 Publication History

Highlights

First unsupervised seizure identification on raw EEG using a variational autoencoder.
Sparsity-enforcing loss function to suppress EEG artifacts.
Validated on three publicly available EEG datasets.
Successfully distinguish between non-seizure vs. seizure windows with up to 0.83 AUC.

Abstract

Background and Objective

Epilepsy is one of the most common neurological disorders, whose development is typically detected via early seizures. Electroencephalogram (EEG) is prevalently employed for seizure identification due to its routine and low expense collection. The stochastic nature of EEG makes manual seizure inspections laborsome, motivating automated seizure identification. The relevant literature focuses mostly on supervised machine learning. Despite their success, supervised methods require expert labels indicating seizure segments, which are difficult to obtain on clinically-acquired EEG. Thus, we aim to devise an unsupervised method for seizure identification on EEG.

Methods

We propose the first fully-unsupervised deep learning method for seizure identification on raw EEG, using a variational autoencoder (VAE). In doing so, we train the VAE on recordings without seizures. As training captures non-seizure activity, we identify seizures with respect to the reconstruction errors at inference time. Moreover, we extend the traditional VAE training loss to suppress EEG artifacts. Our method does not require ground-truth expert labels indicating seizure segments or manual feature extraction.

Results

We implement our method using the PyTorch library and execute experiments on an NVIDIA V100 GPU. We evaluate our method on three benchmark EEG datasets: (i) intracranial recordings from the University of Pennsylvania and the Mayo Clinic, (ii) scalp recordings from the Temple University Hospital of Philadelphia, and (iii) scalp recordings from the Massachusetts Institute of Technology and the Boston Children’s Hospital. To assess performance, we report accuracy, precision, recall, Area under the Receiver Operating Characteristics Curve (AUC), and p-value under the Welch t-test for distinguishing seizure vs. non-seizure EEG windows. Our approach can successfully distinguish seizures from non-seizure activity, with up to 0.83 AUC on intracranial recordings. Moreover, our algorithm has the potential for real-time inference, by processing at least 10 s of EEG in a second.

Conclusion

We take the first successful steps in deep learning-based unsupervised seizure identification on raw EEG. Our approach has the potential of alleviating the burden on clinical experts regarding laborsome EEG inspections for seizures. Furthermore, aiding the identification of early seizures via our method could facilitate successful detection of epilepsy development and initiate antiepileptogenic therapies.

References

[1]
R.D. Thijs, R. Surges, T.J. O’Brien, J.W. Sander, Epilepsy in adults, Lancet 393 (10172) (2019) 689–701.
[2]
J. Engel, Seizures and epilepsy, volume 83, Oxford University Press, 2013.
[3]
P.M. Vespa, V. Shrestha, N. Abend, D. Agoston, A. Au, M.J. Bell, T.P. Bleck, M.B. Blanco, J. Claassen, R. Diaz-Arrastia, et al., The epilepsy bioinformatics study for anti-epileptogenic therapy (EpiBioS4Rx) clinical biomarker: study design and protocol, Neurobiol. Dis. 123 (2019) 110–114.
[4]
L. Hirsch, S. LaRoche, N. Gaspard, E. Gerard, A. Svoronos, S. Herman, R. Mani, H. Arif, N. Jette, Y. Minazad, et al., American clinical neurophysiology society standardized critical care EEG terminology: 2012 version, J. Clin. Neurophysiol. 30 (1) (2013) 1–27.
[5]
S. Saba-Sadiya, E. Chantland, T. Alhanai, T. Liu, M.M. Ghassemi, Unsupervised EEG artifact detection and correction, Front. Digit. Health 2 (2021) 57.
[6]
T. Zhang, W. Chen, LMD based features for the automatic seizure detection of EEG signals using SVM, IEEE Trans. Neural Syst. Rehabil. Eng. 25 (8) (2016) 1100–1108.
[7]
H.U. Amin, M.Z. Yusoff, R.F. Ahmad, A novel approach based on wavelet analysis and arithmetic coding for automated detection and diagnosis of epileptic seizure in EEG signals using machine learning techniques, Biomed. Signal Process. Control 56 (2020) 101707.
[8]
V.K. Mehla, A. Singhal, P. Singh, R.B. Pachori, An efficient method for identification of epileptic seizures from EEG signals using fourier analysis, Phys. Eng. Sci. Med. (2021) 1–14.
[9]
R. Ramos-Aguilar, J.A. Olvera-López, I. Olmos-Pineda, S. Sánchez-Urrieta, Feature extraction from EEG spectrograms for epileptic seizure detection, Pattern Recognit. Lett. 133 (2020) 202–209.
[10]
B. Zhu, M. Shoaran, Unsupervised domain adaptation for cross-subject few-shot neurological symptom detection, Proceedings of the 10th International IEEE/EMBS Conference on Neural Engineering (NER), 2021, pp. 181–184,.
[11]
S. Chakrabarti, A. Swetapadma, P.K. Pattnaik, A channel independent generalized seizure detection method for pediatric epileptic seizures, Comput. Methods Progr. Biomed. 209 (2021) 106335,.
[12]
D. Kostas, S. Aroca-Ouellette, F. Rudzicz, Bendr: using transformers and a contrastive self-supervised learning task to learn from massive amounts of EEG data, (2021) arXiv preprint arXiv:2101.12037.
[13]
Y. Li, Y. Liu, W.-G. Cui, Y.-Z. Guo, H. Huang, Z.-Y. Hu, Epileptic seizure detection in EEG signals using a unified temporal-spectral squeeze-and-excitation network, IEEE Trans. Neural Syst. Rehabil. Eng. 28 (4) (2020) 782–794.
[14]
X. Zhang, L. Yao, M. Dong, Z. Liu, Y. Zhang, Y. Li, Adversarial representation learning for robust patient-independent epileptic seizure detection, IEEE J. Biomed. Health Inform. 24 (10) (2020) 2852–2859.
[15]
S. Chakrabarti, A. Swetapadma, P.K. Pattnaik, T. Samajdar, Pediatric seizure prediction from EEG signals based on unsupervised learning techniques using various distance measures, Proceedings of the 1st International Conference on Electronics, Materials Engineering and Nano-Technology, 2017, pp. 1–5,.
[16]
S. Belhadj, A. Attia, A.B. Adnane, Z. Ahmed-Foitih, A.A. Taleb, Whole brain epileptic seizure detection using unsupervised classification, Proceedings of the 8th International Conference on Modelling, Identification and Control, 2016, pp. 977–982,.
[17]
J. Birjandtalab, M.B. Pouyan, M. Nourani, Unsupervised EEG analysis for automated epileptic seizure detection, Proceedings of the First International Workshop on Pattern Recognition, volume 10011, International Society for Optics and Photonics, 2016, p. 100110M.
[18]
K. Charupanit, I. Sen-Gupta, J.J. Lin, B.A. Lopour, Detection of anomalous high-frequency events in human intracranial EEG, Epilepsia Open 5 (2) (2020) 263–273.
[19]
S. You, B.H. Cho, S. Yook, J.Y. Kim, Y.M. Shon, D.W. Seo, I.Y. Kim, Unsupervised automatic seizure detection for focal-onset seizures recorded with behind-the-ear EEG using an anomaly-detecting generative adversarial network, Comput. Methods Progr. Biomed. 193 (2020) 105472.
[20]
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial networks, Commun. ACM 63 (11) (2020) 139–144.
[21]
D.P. Kingma, M. Welling, Auto-encoding variational (2013) bayes, arXiv preprint arXiv:1312.6114.
[22]
A. Farnoosh, B. Rezaei, S. Ostadabbas, DeepPBM: deep probabilistic background model estimation from video sequences (2019) arXiv preprint:1902.00820.
[23]
J. Pereira, M. Silveira, Unsupervised anomaly detection in energy time series data using variational recurrent autoencoders with attention, Proceedings of the International Conference on Machine Learning and Applications, IEEE, 2018, pp. 1275–1282.
[24]
P. Boonyakitanont, A. Lek-Uthai, K. Chomtho, J. Songsiri, A review of feature extraction and performance evaluation in epileptic seizure detection using EEG, Biomed. Signal Process. Control 57 (2020) 101702.
[25]
E.V. Carrera, F. Quinga, Analysis of epileptic seizure predictions based on intracranial EEG records, Proceedings of the IEEE Colombian Conference on Communications and Computing, IEEE, 2018, pp. 1–5.
[26]
M. Radman, M. Moradi, A. Chaibakhsh, M. Kordestani, M. Saif, Multi-feature fusion approach for epileptic seizure detection from EEG signals, IEEE Sens. J. 21 (3) (2020) 3533–3543.
[27]
N. Ilakiyaselvan, A.N. Khan, A. Shahina, Deep learning approach to detect seizure using reconstructed phase space images, J. Biomed. Res. 34 (3) (2020) 240.
[28]
U.R. Acharya, S.L. Oh, Y. Hagiwara, J.H. Tan, H. Adeli, Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals, Comput. Biol. Med. 100 (2018) 270–278.
[29]
W. Zhao, W. Zhao, W. Wang, X. Jiang, X. Zhang, Y. Peng, B. Zhang, G. Zhang, A novel deep neural network for robust detection of seizures using EEG signals, Comput. Math. Methods Med. 2020 (2020).
[30]
L. Sun, B. Jin, H. Yang, J. Tong, C. Liu, H. Xiong, Unsupervised EEG feature extraction based on echo state network, Inf. Sci. 475 (2019) 1–17.
[31]
E. Eldele, M. Ragab, Z. Chen, M. Wu, C.K. Kwoh, X. Li, C. Guan, Time-series representation learning via temporal and contextual contrasting, (2021) arXiv preprint arXiv:2106.14112.
[32]
M.N. Mohsenvand, M.R. Izadi, P. Maes, Contrastive representation learning for electroencephalogram classification, Proceedings of the Machine Learning for Health, PMLR, 2020, pp. 238–253.
[33]
R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B (Methodol.) 58 (1) (1996) 267–288.
[34]
J. Wright, A. Ganesh, S.R. Rao, Y. Peng, Y. Ma, Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization, Proceedings of the Neural Information Processing Systems, volume 58, 2009.
[35]
UPenn, MayoClinic, Upenn and Mayo Clinic’s seizure detection challenge, 2014, https://www.kaggle.com/c/seizure-detection/.
[36]
I. Obeid, J. Picone, The temple university hospital EEG data corpus, Front. Neurosci. 10 (2016) 196,.
[37]
A.H. Shoeb, Application of machine learning to epileptic seizure onset detection and treatment, Massachusetts Institute of Technology, 2009, Ph.D. thesis.
[38]
S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, Proceedings of the International Conference on Machine Learning, PMLR, 2015, pp. 448–456.
[39]
X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, Proceedings of the International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, 2010, pp. 249–256.
[40]
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15 (1) (2014) 1929–1958.
[41]
D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, (2014) arXiv preprint arXiv:1412.6980.
[42]
L. Van der Maaten, G. Hinton, Visualizing data using t-SNE, J. Mach. Learn. Res. 9 (11) (2008).
[43]
C.M. Bishop, Pattern recognition, Mach. Learn. 128 (9) (2006).
[44]
H. Ham, T.J. Jun, D. Kim, Unbalanced GANs: pre-training the generator of generative adversarial network using variational autoencoder (2020) arXiv preprint arXiv:2002.02112.
[45]
J. Hochenbaum, O.S. Vallis, A. Kejariwal, Automatic anomaly detection in the cloud via statistical learning (2017) arXiv preprint arXiv:1704.07706.
[46]
R. Peck, C. Olsen, J.L. Devore, Introduction to Statistics and Data Analysis, Cengage Learning, 2015.
[47]
T. Fawcett, An introduction to ROC analysis, Pattern Recognit. Lett. 27 (8) (2006) 861–874.
[48]
G. Ramantani, L. Maillard, L. Koessler, Correlation of invasive EEG and scalp EEG, Seizure 41 (2016) 196–200.
[49]
A. Harati, S. Lopez, I. Obeid, J. Picone, M. Jacobson, S. Tobochnik, The TUH EEG corpus: a big data resource for automated EEG interpretation, Proceedings of the Signal Processing in Medicine and Biology Symposium, IEEE, 2014, pp. 1–5.
[50]
I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT press, 2016.
[51]
T. Dissanayake, T. Fernando, S. Denman, S. Sridharan, C. Fookes, Deep learning for patient-independent epileptic seizure prediction using scalp EEG signals, IEEE Sens. J. 21 (7) (2021) 9377–9388.

Cited By

View all

Index Terms

  1. Unsupervised seizure identification on EEG
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Computer Methods and Programs in Biomedicine
          Computer Methods and Programs in Biomedicine  Volume 215, Issue C
          Mar 2022
          522 pages

          Publisher

          Elsevier North-Holland, Inc.

          United States

          Publication History

          Published: 01 March 2022

          Author Tags

          1. Epilepsy
          2. Seizure
          3. EEG
          4. Variational autoencoder
          5. Unsupervised learning
          6. Sparsity

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 27 Jan 2025

          Other Metrics

          Citations

          Cited By

          View all

          View Options

          View options

          Figures

          Tables

          Media

          Share

          Share

          Share this Publication link

          Share on social media