skip to main content
research-article

Sudden cardiac death (SCD) prediction based on nonlinear heart rate variability features and SCD index

Published: 01 June 2016 Publication History

Abstract

SCD is predicated using SVM classifier and sudden cardiac death index (SCDI).Nonlinear features are extracted from HRV signals.SVM predicts SCD with 94.7% accuracy four minutes before its onset.SCDI predicts SCD accurately. In our previous work, we have developed a sudden cardiac death index (SCDI) using electrocardiogram (ECG) signals that could effectively predict the occurrence of SCD four minutes before the onset. Thus, the prediction of SCD before its onset by using heart rate variability (HRV) signals is a worthwhile task for further investigation. Therefore, in this paper, a new novel methodology to automatically classify the HRV signals of normal and subjects at risk of SCD by using nonlinear techniques has been presented. In this study, we have predicted SCD by analyzing four-minutes of HRV signals (separately for each one-minute interval) prior to SCD occurrence by using nonlinear features such as Renyi entropy (REnt), fuzzy entropy (FE), Hjorth's parameters (activity, mobility and complexity), Tsallis entropy (TEnt), and energy features of discrete wavelet transform (DWT) coefficients. All the clinically significant features obtained are ranked using their t-value and fed to classifiers such as K-nearest neighbor (KNN), decision tree (DT), and support vector machine (SVM). In this work, we have achieved an accuracy of 97.3%, 89.4%, 89.4%, and 94.7% for prediction of SCD one, two, three, and four minutes prior to the SCD onset respectively using SVM classifier. Furthermore, we have also developed a novel SCD Index (SCDI) by using nonlinear HRV signal features to classify the normal and SCD prone HRV signals. Our proposed technique is able to identify the person at risk of developing SCD four minutes earlier, thereby providing sufficient time for the clinicians to respond with treatment in Intensive Care Units (ICU). Thus, this proposed technique can thus serve as a valuable tool for increasing the survival rate of many cardiac patients.

References

[1]
D.P. Zipes, A.J. Camm, M. Borggrefe, A.E. Buxton, B. Chaitman, M. Fromer, G. Gregoratos, G. Klein, A.J. Moss, R.J. Myerburg, S.G. Priori, M.A. Quinones, D.M. Roden, M.J. Silka, C. Tracy, S.C. Smith, A.K. Jacobs, C.D. Adams, E.M. Antman, J.L. Anderson, S.A. Hunt, J.L. Halperin, R. Nishimura, J.P. Ornato, R.L. Page, B. Riegel, J.J. Blanc, A. Budaj, V. Dean, J.W. Deckers, C. Despres, K. Dickstein, J. Lekakis, K. McGregor, M. Metra, J. Morais, A. Osterspey, J.L. Tamargo, J.L. Zamorano, T. Rea, R.L. Page, ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death, Circulation, 114 (2006) e385-e484.
[2]
T.D. Rea, R.L. Page, Contemporary reviews in cardiovascular medicine, community approaches to improve resuscitation after out-of-hospital sudden cardiac arrest, Circulation, 121 (2010) 1134-1140.
[3]
R. Deo, C.M. Albert, Epidemiology and genetics of sudden cardiac death, Circulation, 125 (2012) 620-637.
[4]
J.C. Lopshire, D.P. Zipes, Sudden cardiac death better understanding of risks, mechanisms, and treatment, Circulation, 114 (2006) 1134-1136.
[5]
G.I. Fishman, S. Chugh, J.P. DiMarco, C.M. Albert, M.E. Anderson, Bonow, A.W. Buxton, P.S. Chen, M. Estes, X. Jouven, R. Kwong, D.A. Lathrop, A.M. Mascette, J.M. Nerbonne, B. O'Rourke, R.L. Page, D.M. Roden, D.S. Rosenbaum, N. Sotoodehnia, N.A. Trayanova, Z.J. Zheng, Sudden cardiac death prediction and prevention report from a National Heart, Lung, and Blood Institute and Heart Rhythm Society workshop, Circulation, 122 (2010) 2335-2348.
[6]
R.J. Myerburg, M.J. Junttila, Sudden cardiac death, sudden cardiac death caused by coronary heart disease, Circulation, 125 (2012) 1043-1052.
[7]
H.J.J. Wellens, P.J. Schwartz, F.W. Lindemans, A.E. Buxton, J.J. Goldberger, S.H. Hohnloser, H.V. Huikuri, S. Kaab, M.T. La Roevere, M. Malik, R.J. Myerburg, M.L. Simoons, K. Swedberg, J. Tijssen, A.A. Voors, A.A. Wilde, Risk stratification for sudden cardiac death: current status and challenges for the future, Eur. Heart J., 35 (2014) 1642-1651.
[8]
D. Lloyd-Jones, R.J. Adams, T.M. Brown, M. Carnethon, S. Dai, American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics2010 update: a report from the American Heart Association, Circulation, 121 (2010) e46e215.
[9]
M.H. Kong, G.C. Fonarow, E.D. Peterson, A.B. Curtis, A.F. Hernandez, G.D. Sanders, K.L. Thomas, D.L. Hayes, S.M. Al-Khatib, Systematic review of the incidence of sudden cardiac death in the United states, J. Am. Coll. Cardiol., 57 (2011) 794-801.
[10]
N.J. Pagidipati, T.A. Gaziano, Estimating deaths from cardiovascular disease. A review of global methodologies of mortality measurement, Circulation, 127 (2013) 749-756.
[11]
R. Passman, J.J. Goldberger, Predicting the future risk stratification for sudden cardiac death in patients with left ventricular dysfunction, Circulation, 125 (2012) 3031-3037.
[12]
H.V. Huikuri, A. Castellanos, R.J. Myerburg, Sudden death due to cardiac arrhythmias, N. Engl. J. Med., 345 (2001) 1473-1482.
[13]
A. Algra, J.G. Tijssen, J.R. Roelandt, J. Pool, J. Lubsen, QTc prolongation measured by standard 12-lead electrocardiography is an independent risk factor for sudden death due to cardiac arrest, Circulation, 83 (1991) 1888.
[14]
H.V. Huikuri, J.M. Tapanainen, K. Lindgren, P. Raatikainen, T.H. Makikallio, A.K.E. Juhani, R.J. Myerburg, Prediction of sudden cardiac death after myocardial infarction in the beta-blocking era, J. Am. Coll. Cardiol., 42 (2003) 652.
[15]
C.Y. Yeung, K.S. Lam, S.W. Li, K.F. Lam, H.F. Tse, C.W. Siu, Sudden cardiac death after myocardial infarction in type 2 diabetic patients with no residual myocardial ischemia, Diabetes, 35 (2012) 2564-2569.
[16]
M.T. Rovere, G.D. Pinna, R. Maestri, A. Mortara, S. Capomolla, O. Febo, R. Ferrari, M. Franchini, M. Gnemmi, C. Opasich, P.G. Riccardi, E. Traversi, F. Cobelli, Short term heart rate variability strongly predicts sudden cardiac death in heart failure patients, Circulation, 107 (2003) 565-570.
[17]
T.W. Shen, H.P. Shen, C. Lin, Y. Ou, Detection and prediction of Sudden Cardiac Death (SCD) for personal healthcare, in: 29th Annual International Conference of the IEEE, 2007, pp. 2575-2578.
[18]
F. Lombardi, H.M. Timo, J.M. Robert, V.H. Heikki, Sudden cardiac death: role of heart rate variability to identify patients at risk, Cardiovasc. Res., 50 (2001) 210-217.
[19]
H.V. Huikuri, T.H. Makikallio, M.J. Raatikainen, J. Perkiomaki, A. Castellanos, R.J. Myerburg, Prediction of sudden cardiac death: appraisal of the studies and methods assessing the risk of sudden arrhythmic death, Circulation, 108 (2003) 110-115.
[20]
D.J. Statters, M. Malik, D.E. Ward, A.J. Camm, QT dispersion: problems of methodology and clinical significance, J. Cardiovasc. Electrophysiol., 5 (1994) 672-685.
[21]
Heart rate variability standards of measurement, physiological interpretation and clinical use, Circulation, 93 (1996) 1043-1065.
[22]
J. Kurths, A. Voss, P. Saparin, A. Witt, H.J. Kleiner, Quantitative analysis of heart rate variability, Chaos, 5 (1995) 88-94.
[23]
S. Joo, K.J. Choi, S.J. Huh, Prediction of spontaneous ventricular tachyarrhythmia by an artificial neural network using parameters gleaned from short-term heart rate variability, Expert Syst. Appl., 39 (2012) 3862-3866.
[24]
A. Voss, J. Kurths, H.J. Kleiner, A. Witt, N. Wessel, P. Saparin, K.J. Osterziel, R. Schurath, R. Dietz, The application of methods of nonlinear dynamics for the improved and predictive recognition of patients by sudden cardiac death, Cardiovasc. Res., 31 (1996) 419-433.
[25]
E. Elias, M. Pooyan, Early detection of sudden cardiac death by using classical linear techniques and time-frequency methods on electrocardiogram signals, Biomed. Sci. Eng., 11 (2011) 699-706.
[26]
R.J. Martis, U.R. Acharya, J.H. Tan, A. Petznick, R. Yanti, K.C. Chua, E.Y.K. Ng, L. Tong, Application of empirical mode decomposition (EMD) for automated detection of epilepsy using EEG signals, Int. J. Neural Syst., 22 (2012).
[27]
M. George, N. Stavros, A. Petros, G. Konstantinos, D. Polychronis, S. Christodoulos, Risk stratification for arrhythmic sudden cardiac death in heart failure patients using machine learning techniques, Comput. Cardiol., 40 (2013) 141-144.
[28]
E. Elias, P. Mohammad, B. Ahmad, A novel approach to predict sudden cardiac death (SCD) using nonlinear and time-frequency analyses from HRV signals, PLOS, 9 (2014) e81896.
[29]
U.R. Acharya, H. Fujita, K.S. Vidya, S.S. Vinitha, W.J.E. Lim, D.N. Ghista, R.S. Tan, An integrated index for detection of sudden cardiac death using wavelet transform and nonlinear features, Knowl.-Based Syst., 83 (2015) 149-158.
[30]
U.R. Acharya, M. Sankaranarayanan, J. Nayak, C. Xiang, T. Tamura, Automatic identification of cardiac health using modeling techniques: a comparative study, Inform. Sci., 178 (2008) 4571-4582.
[31]
M. Bielecka, A. Piórkowski, Automatized fuzzy evaluation of CT scan heart slices for creating 3D/4D heart model, Appl. Soft Comput., 30 (2015) 179-189.
[32]
S. Polak, B. Wi¿niowska, M. Ahmadi, A. Mendyk, Prediction of the hERG potassium channel inhibition potential with use of artificial neural networks, Appl. Soft Comput., 11 (2011) 2611-2617.
[33]
S. Patidar, R.B. Pachori, U.R. Acharya, Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied on heart rate signals, Knowl.-Based Syst., 82 (2015) 1-10.
[34]
S. Sun, An innovative intelligent system based on automatic diagnostic feature extraction for diagnosing heart diseases, Knowl.-Based Syst., 75 (2015) 224-238.
[35]
C.-J. Su, C.-J. Wu, JADE implemented mobile multi-agent based, distributed information platform for pervasive health care monitoring, Appl. Soft Comput., 11 (2011) 315-325.
[36]
D.J. Jagannath, A.I. Selvakumar, Superior foetal electrocardiogram signal elicitation using a novel artificial intelligent Bayesian methodology, Appl. Soft Comput., 37 (2015) 1002-1017.
[37]
J. Zhu, Q. Xie, K. Zheng, An improved early detection method of type-2 diabetes mellitus using multiple classifier system, Inform. Sci., 292 (2015) 1-14.
[38]
A.L. Goldberger, L.A. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals, Circulation, 101 (2000) e215-e220.
[39]
B.N. Singh, A.K. Tiwari, Optimal selection of wavelet basis function applied to ECG signal denoising, Digital Signal Process., 16 (2006) 275-287.
[40]
J. Pan, W.J. Tompkins, A real time QRS detection algorithm, IEEE Trans. Biomed. Eng., 3 (1985) 230-236.
[41]
B. Kosko, Fuzzy entropy and conditioning, Inform. Sci., 40 (1986) 165-174.
[42]
A. Renyi, On measures of entropy and information, in: Proceedings of Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, 1961, pp. 547-561.
[43]
P. Grassberger, Information and complexity measures in dynamical systems, in: Information Dynamics, Plenum Press, New York, USA, 1991, pp. 15-33.
[44]
B. Hjorth, A.B. Elema-Schonander, EEG analysis based on time domain properties, Electroencephalogr. Clin. Neurophysiol., 2.2 (1970) 306-310.
[45]
S.H. Oh, Y.R. Lee, O.N. Kim, A novel EEG feature extraction method using Hjorth parameter, Int. J. Electron. Electr. Eng., 2.2 (2014) 106-110.
[46]
A. Capuro, L. Diambra, D. Lorenzo, O. Macadar, M. Martin, C. Mostaccio, A. Plastino, J. Perez, E. Rofman, M. Torres, J. Velluti, Human brain dynamics: the analysis of EEG signals with Tsallis information measure, Physica A (1999) 235-254.
[47]
U.R. Acharya, K.S. Vidya, D.N. Ghista, W.J.E. Lim, F. Molinari, M. Sankaranarayanan, Computer-aided diagnosis of diabetic subjects by heart rate variability signals using discrete wavelet transform method, Knowl.-Based Syst., 81 (2015) 56-64.
[48]
D. Giri, U.R. Acharya, J.M. Roshan, S. VinithaSree, T.C. Lim, A.V.I. Thajudin, J.S. Suri, Automated diagnosis of coronary artery disease affected patients using LDA, PCA, ICA and discrete wavelet transform, Knowl.-Based Syst., 37 (2012) 274-282.
[49]
R.O. Duda, E.H. Peter, G.S. David, Pattern Classification, Wiley-Interscience, 2012.
[50]
D.N. Ghista, Physiological systems' numbers in medical diagnosis and hospital cost effective operation, J. Mech. Med. Biol., 4 (2004) 401-418.
[51]
D.N. Ghista, Nondimensional physiological indices for medical assessment, J. Mech. Med. Biol., 9 (2009) 643-669.
[52]
D.N. Ghista, Applied Biomedical Engineering Mechanics, CRC Press, 2009.
[53]
U.R. Acharya, O. Faust, V.S. Sree, D.N. Ghista, S. Dua, P. Jospeh, V.I. Thajudin Ahamed, J. Nittiagandhi, T. Tamura, An integrated diabetic index using heart rate variability signal features for diagnosis of diabetes, Comput. Methods Biomech. Biomed. Eng., 16 (2011) 222-234.
[54]
U.R. Acharya, E.Y.K. Ng, J.H. Tan, S.V. Sree, K.H. Ng, An integrated index for the identification of diabetic retinopathy stages using texture parameters, J. Med. Syst., 36 (2012) 2011-2020.
[55]
S. Pincus, W. Huang, Approximate entropy - statistical properties and applications, Commun. Stat. Theory Methods, 21 (1992) 3061-3077.
[56]
E.S. James, J.M. Anchin, D.N. Weiss, Nonlinear analysis of the heartbeats in public patient ECGs using an automated PD2i algorithm for risk stratification of arrhythmic death, Ther. Clin. Risk Manag., 4 (2008) 549-557.
[57]
U.R. Acharya, H. Fujita, K.S. Vidya, D.N. Ghista, W.J.E. Lim, J.E.W. Koh, Automated prediction of sudden cardiac death risk using Kolmogorov complexity and recurrence quantification analysis features extracted from HRV signals, in: IEEE SMC 2015 Conference, 2015, pp. 1110-1115.
[58]
U.R. Acharya, H. Fujita, K.S. Vidya, S. Bhat, J.E.W. Koh, Application of entropies for automated diagnosis of epilepsy using EEG signals: a review, Knowl.-Based Syst., 88 (2015) 85-96.
[59]
R. Acharya, N. Kannathal, S.M. Krishnan, Comprehensive analysis of cardiac health using heart rate signals, Physiol. Meas., 25 (2004) 1139-1151.
[60]
U.R. Acharya, O. Faust, N.A. Kadri, J.S. Suri, W. Yu, Automated identification of normal and diabetes heart rate signals using nonlinear measures, Comput. Biol. Med., 43 (2013) 1523-1529.
[61]
H. Sahin, A. Subasi, Classification of the cardiotocogram data for anticipation of fetal risks using machine learning techniques, Appl. Soft Comput., 33 (2015) 231-238.
[62]
E. Alickovic, A. Subasi, Effect of multiscale PCA de-noising in ECG beat classification for diagnosis of cardiovascular diseases, Circuits Syst. Signal Process., 34 (2015) 513-533.
[63]
E. Gokgoz, A. Subasi, Comparison of decision tree algorithms for EMG signal classification, Biomed. Signal Process. Control, 18 (2015) 138-144.
[64]
A. Subasi, A decision support system for diagnosis of neuromuscular disorders using evolutionary support vector machines, Signal Image Video Process., 9 (2015) 399-408.
[65]
J. Kevric, A. Subasi, The effect of multiscale PCA de-noising in epileptic seizure detection, J. Med. Syst., 38 (2014).
[66]
E. Gokgoz, A. Subasi, Effect of multiscale PCA de-noising on EMG signal classification for diagnosis of neuromuscular disorders, J. Med. Syst., 38 (2014).
[67]
A. Subasi, Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders, Comput. Biol. Med., 43 (2013) 576-586.

Cited By

View all
  1. Sudden cardiac death (SCD) prediction based on nonlinear heart rate variability features and SCD index

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Applied Soft Computing
      Applied Soft Computing  Volume 43, Issue C
      June 2016
      643 pages

      Publisher

      Elsevier Science Publishers B. V.

      Netherlands

      Publication History

      Published: 01 June 2016

      Author Tags

      1. ECG
      2. Heart rate
      3. Nonlinear methods
      4. Sudden cardiac death
      5. Ventricular fibrillation

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 31 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      View options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media