skip to main content
article

Complexity-sensitive decision procedures for abstract argumentation

Published: 01 January 2014 Publication History

Abstract

Abstract argumentation frameworks (AFs) provide the basis for various reasoning problems in the area of Artificial Intelligence. Efficient evaluation of AFs has thus been identified as an important research challenge. So far, implemented systems for evaluating AFs have either followed a straight-forward reduction-based approach or been limited to certain tractable classes of AFs. In this work, we present a generic approach for reasoning over AFs, based on the novel concept of complexity-sensitivity. Establishing the theoretical foundations of this approach, we derive several new complexity results for preferred, semi-stable and stage semantics which complement the current complexity landscape for abstract argumentation, providing further understanding on the sources of intractability of AF reasoning problems. The introduced generic framework exploits decision procedures for problems of lower complexity whenever possible. This allows, in particular, instantiations of the generic framework via harnessing in an iterative way current sophisticated Boolean satisfiability (SAT) solver technology for solving the considered AF reasoning problems. First experimental results show that the SAT-based instantiation of our novel approach outperforms existing systems.

References

[1]
Dung, P.M., On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence. v77 i2. 321-358.
[2]
Dunne, P.E. and Bench-Capon, T.J.M., Coherence in finite argument systems. Artificial Intelligence. v141 i1/2. 187-203.
[3]
Dvořák, W. and Woltran, S., Complexity of semi-stable and stage semantics in argumentation frameworks. Inform. Process. Lett. v110 i11. 425-430.
[4]
Coste-Marquis, S., Devred, C. and Marquis, P., Symmetric argumentation frameworks. In: Lecture Notes in Comput. Sci., vol. 3571. Springer. pp. 317-328.
[5]
Computational properties of argument systems satisfying graph-theoretic constraints. Artificial Intelligence. v171 i10-15. 701-729.
[6]
Dvořák, W., Szeider, S. and Woltran, S., Reasoning in argumentation frameworks of bounded clique-width. In: Frontiers Artificial Intelligence Appl., vol. 216. IOS Press. pp. 219-230.
[7]
Dvořák, W., Pichler, R. and Woltran, S., Towards fixed-parameter tractable algorithms for abstract argumentation. Artificial Intelligence. v186. 1-37.
[8]
Dvořák, W., Ordyniak, S. and Szeider, S., Augmenting tractable fragments of abstract argumentation. Artificial Intelligence. v186. 157-173.
[9]
Truszczynski, M., Trichotomy and dichotomy results on the complexity of reasoning with disjunctive logic programs. Theory Pract. Log. Program. v11 i6. 881-904.
[10]
Marques-Silva, J.P. and Sakallah, K.A., GRASP: A search algorithm for propositional satisfiability. IEEE Trans. Comput. v48 i5. 506-521.
[11]
Eén, N. and Sörensson, N., An extensible SAT-solver. In: Lecture Notes in Comput. Sci., vol. 2919. Springer. pp. 502-518.
[12]
Clarke, E.M., Grumberg, O., Jha, S., Lu, Y. and Veith, H., Counterexample-guided abstraction refinement for symbolic model checking. J. ACM. v50 i5. 752-794.
[13]
Clarke, E.M., Gupta, A. and Strichman, O., SAT-based counterexample-guided abstraction refinement. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. v23 i7. 1113-1123.
[14]
Eiter, T. and Gottlob, G., On the computational cost of disjunctive logic programming: Propositional case. Ann. Math. Artif. Intell. v15 i3-4. 289-323.
[15]
Lierler, Y., cmodels - SAT-based disjunctive answer set solver. In: Lecture Notes in Comput. Sci., vol. 3662. Springer. pp. 447-451.
[16]
Checking the acceptability of a set of arguments. In: Proceedings of the 10th International Workshop on Non-Monotonic Reasoning, pp. 59-64.
[17]
Egly, U., Gaggl, S.A. and Woltran, S., Answer-set programming encodings for argumentation frameworks. Argum. Comput. v1 i2. 147-177.
[18]
Dvořák, W., Gaggl, S.A., Wallner, J.P. and Woltran, S., Making use of advances in answer-set programming for abstract argumentation systems. In: Lecture Notes in Comput. Sci., vol. 7773. Springer.
[19]
Baroni, P. and Giacomin, M., Semantics of abstract argument systems. In: Rahwan, I., Simari, G. (Eds.), Argumentation in Artificial Intelligence, Springer. pp. 25-44.
[20]
Baroni, P., Caminada, M. and Giacomin, M., An introduction to argumentation semantics. Knowl. Eng. Rev. v26 i4. 365-410.
[21]
Dimopoulos, Y. and Torres, A., Graph theoretical structures in logic programs and default theories. Theoret. Comput. Sci. v170 i1-2. 209-244.
[22]
Dunne, P.E. and Caminada, M., Computational complexity of semi-stable semantics in abstract argumentation frameworks. In: Lecture Notes in Comput. Sci., vol. 5293. Springer. pp. 153-165.
[23]
Dvořák, W. and Woltran, S., On the intertranslatability of argumentation semantics. J. Artificial Intelligence Res. v41. 445-475.
[24]
Bang-Jensen, J. and Gutin, G., Digraphs: Theory, Algorithms and Applications. 2010. Springer Monogr. Math., 2010.Springer.
[25]
Dunne, P.E. and Wooldridge, M., Complexity of abstract argumentation. In: Simari, G., Rahwan, I. (Eds.), Argumentation in Artificial Intelligence, Springer. pp. 85-104.
[26]
Dunne, P.E., The computational complexity of ideal semantics. Artificial Intelligence. v173 i18. 1559-1591.
[27]
NP is as easy as detecting unique solutions. Theoret. Comput. Sci. v47 i3. 85-93.
[28]
Caminada, M. and Gabbay, D., A logical account of formal argumentation. Studia Logica. v93 i2-3. 109-145.
[29]
Dvořák, W., Gaggl, S.A., Szeider, S. and Woltran, S., The added value of argumentation. In: Agreement Technologies, vol. 8. pp. 389-393.
[30]
Gebser, M., Kaminski, R. and Schaub, T., Complex optimization in answer set programming. Theory Pract. Log. Program. v11 i4-5. 821-839.
[31]
Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M. and Schaub, T., Conflict-driven disjunctive answer set solving. In: Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning, AAAI Press. pp. 422-432.
[32]
Gebser, M., Kaminski, R., König, A. and Schaub, T., Advances in gringo series 3. In: Lecture Notes in Comput. Sci., vol. 6645. Springer. pp. 345-351.
[33]
Sebastiani, R., Lazy satisfiability modulo theories. J. Satisf. Boolean Model. Comput. v3 i3-4. 141-224.
[34]
de Moura, L., Ruess, H. and Sorea, M., Lazy theorem proving for bounded model checking over infinite domains. In: Lecture Notes in Comput. Sci., vol. 2392. Springer. pp. 438-455.
[35]
Barrett, C.W., Dill, D.L. and Stump, A., Checking satisfiability of first-order formulas by incremental translation to SAT. In: Lecture Notes in Comput. Sci., vol. 2404. Springer. pp. 236-249.
[36]
Theorem proving using lazy proof explication. In: Lecture Notes in Comput. Sci., vol. 2725. Springer. pp. 355-367.
[37]
Wintersteiger, C.M., Hamadi, Y. and de Moura, L., Efficiently solving quantified bit-vector formulas. In: Proceedings of the 10th International Conference on Formal Methods in Computer-Aided Design, IEEE. pp. 239-246.
[38]
Monniaux, D., Quantifier elimination by lazy model enumeration. In: Lecture Notes in Comput. Sci., vol. 6174. Springer. pp. 585-599.
[39]
Counterexample guided abstraction refinement algorithm for propositional circumscription. In: Lecture Notes in Comput. Sci., vol. 6341. Springer. pp. 195-207.
[40]
Janota, M. and Marques-Silva, J.P., Abstraction-based algorithm for 2QBF. In: Lecture Notes in Comput. Sci., vol. 6695. Springer. pp. 230-244.
[41]
Janota, M., Klieber, W., Marques-Silva, J. and Clarke, E.M., Solving QBF with counterexample guided refinement. In: Lecture Notes in Comput. Sci., vol. 7317. Springer. pp. 114-128.
[42]
A QBF-based formalization of abstract argumentation semantics. J. Appl. Log. v11 i2. 229-252.
[43]
Reasoning in argumentation frameworks using quantified boolean formulas. In: Frontiers Artificial Intelligence Appl., vol. 144. IOS Press. pp. 133-144.
[44]
Argumentation frameworks as constraint satisfaction problems. In: Lecture Notes in Comput. Sci., vol. 6929. Springer. pp. 110-122.
[45]
Finding partitions of arguments with Dung's properties via SCSPs. In: Proceedings of the 2011 ACM Symposium on Applied Computing, ACM. pp. 913-919.
[46]
Verheij, B., A labeling approach to the computation of credulous acceptance in argumentation. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 623-628.
[47]
Modgil, S. and Caminada, M., Proof theories and algorithms for abstract argumentation frameworks. In: Argumentation in Artificial Intelligence, Springer. pp. 105-132.
[48]
Podlaszewski, M., Caminada, M. and Pigozzi, G., An implementation of basic argumentation components. In: Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1307-1308.
[49]
Doutre, S. and Mengin, J., Preferred extensions of argumentation frameworks: Query answering and computation. In: Goré, R., Leitsch, A., Nipkow, T. (Eds.), Lecture Notes in Comput. Sci., vol. 2083. Springer. pp. 272-288.
[50]
On preferred extension enumeration in abstract argumentation. In: Frontiers Artificial Intelligence Appl., vol. 245. IOS Press. pp. 205-216.
[51]
Baumann, R., Splitting an argumentation framework. In: Lecture Notes in Comput. Sci., vol. 6645. Springer. pp. 40-53.
[52]
Splitting argumentation frameworks: An empirical evaluation. In: Lecture Notes in Comput. Sci., vol. 7132. Springer. pp. 17-31.
[53]
Baumann, R., Brewka, G., Dvořák, W. and Woltran, S., Parameterized splitting: A simple modification-based approach. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (Eds.), Lecture Notes in Comput. Sci., vol. 7265. Springer. pp. 57-71.
[54]
Dvořák, W., Pichler, R. and Woltran, S., Towards fixed-parameter tractable algorithms for abstract argumentation. Artificial Intelligence. v186. 1-37.
[55]
A dynamic programming reasoner for abstract argumentation. In: Lecture Notes in Comput. Sci., vol. 7773. Springer.
[56]
Nofal, S., Dunne, P.E. and Atkinson, K., Towards average-case algorithms for abstract argumentation. In: Artificial Intelligence, vol. 1. SciTePress. pp. 225-230.
[57]
Dvořák, W., Järvisalo, M., Wallner, J.P. and Woltran, S., Complexity-sensitive decision procedures for abstract argumentation. In: Proceedings of the 13th International Conference on Principles of Knowledge Representation and Reasoning, AAAI Press. pp. 54-64.
[58]
Brewka, G. and Woltran, S., Abstract dialectical frameworks. In: Proceedings of the 12th International Conference on Principles of Knowledge Representation and Reasoning, AAAI Press. pp. 102-111.
[59]
Amgoud, L., Cayrol, C., Lagasquie, M.-C. and Livet, P., On bipolarity in argumentation frameworks. Int. J. Intell. Syst. v23. 1-32.
[60]
Modgil, S., Reasoning about preferences in argumentation frameworks. Artificial Intelligence. v173 i9-10. 901-934.

Cited By

View all
  1. Complexity-sensitive decision procedures for abstract argumentation

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Artificial Intelligence
    Artificial Intelligence  Volume 206, Issue
    January, 2014
    112 pages

    Publisher

    Elsevier Science Publishers Ltd.

    United Kingdom

    Publication History

    Published: 01 January 2014

    Author Tags

    1. Abstract argumentation
    2. Argumentation procedures
    3. Computational complexity

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 06 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media