skip to main content
article

A descent algorithm without line search for unconstrained optimization

Published: 01 December 2009 Publication History

Abstract

In this paper, a new descent algorithm for solving unconstrained optimization problem is presented. Its search direction is descent and line search procedure can be avoided except for the first iteration. It is globally convergent under mild conditions. The search direction of the new algorithm is generalized and convergence of corresponding algorithm is also proved. Numerical results show that the algorithm is efficient for given test problems.

References

[1]
Dai, Y.H. and Yuan, Y., Nonlinear Conjugate Gradient Methods (in Chinese). 2000. Shanghai Science and Technology Press of China, Shanghai.
[2]
Optimization Theory and Methods: Nonlinear Programming. 2006. Springer-Verlag, New York.
[3]
Shi, Z.J. and Shen, J., Convergence of descent method without line search. Appl. Math. Computat. v167. 94-107.
[4]
Barzilai, J. and Borwein, J.M., Two point step size gradient methods. IMA J. Numer. Anal. v8. 141-148.
[5]
Dixon, L.C.W., Conjugate directions without line searches. J. Inst. Math. Appl. v11. 317-328.
[6]
Dai, Y.H. and Yuan, Y., Alternate minimization gradient method. IMA J. Numer. Anal. v23. 377-393.
[7]
Dai, Y.H., Yuan, Y.J. and Yuan, Y., Modified two-point stepsize gradient methods for unconstrained optimization. Computat. Optimizat. Appl. v22. 103-109.
[8]
Dai, Y.H. and Liao, L.Z., R-linear convergence of the Barzilai and Borwein gradient method. IMA J. Numer. Anal. v22. 1-10.
[9]
Dai, Y.H. and Zhang, H., An adaptive two-point stepsize gradient algorithm. Numer. Algorithm. v27. 377-385.
[10]
Liu, W.B. and Dai, Y.H., Minimization algorithms based on supervisor and searcher cooperation. JOTA. v111. 359-379.
[11]
Raydan, M., The Barzilai and Borwein method for the large scale unconstrained minimization problem. SIAM J. Optimizat. v7. 26-33.
[12]
Raydan, M., On the Barzilai and Borwein gradient choice of steplength for the gradient method. IMA J. Numer. Anal. v13. 321-326.
[13]
Varhatis, M.N., Amdroulakis, G.S. and Lambrinos, J.N., A class of gradient unconstrained minimization algorithms with adaptive stepsize. J. Comput. Appl. Math. v114. 367-386.
[14]
Low storage methods for unconstrained optimization. Lect. Appl. Math. (AMS). v25. 165-179.
[15]
Birgin, E.G., Martinez, J.M. and Raydan, M., Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. v10. 1196-1211.
[16]
Friedlander, A., Martinez, J.M., Molina, B. and Raydan, M., Gradient method with retards and generalizations. SIAM J. Numer. Anal. v36. 275-289.
[17]
Magoulas, G.D., A class of gradient unconstrained minimization algorithms with adaptive stepsize. J. Comput. Appl. Math. v114. 367-386.
[18]
Glunt, W., Haydan, T.L. and Raydan, M., Molecular conformations from distance matrices. J. Comput. Chem. v14. 114-120.
[19]
Birgin, E.G., Chambouleyron, I. and Martinez, J.M., Estimation of the optical constants and the thickness of thin films using unconstrained optimization. J. Comput. Phys. v151. 862-880.
[20]
Chen, X.D. and Sun, J., Global convergence of a two-parameter family of conjugate gradient methods without line search. J. Computat. Appl. Math. v146. 37-45.
[21]
Sun, J. and Zhang, J.P., Global convergence of conjugate gradient methods without line search. Ann. Operat. Res. v103. 161-173.
[22]
Shi, Z.J., Convergence of line search methods for unconstrained optimization. Appl. Math. Computat. v157. 393-405.
[23]
Shi, Z.J. and Shen, J., A new descent algorithm with curve search rule. Appl. Math. Computat. v161. 753-768.
[24]
Nocedal, J. and Stephen, J.W., Numerical Optimization. 1999. Springer-Verlag, New York.
[25]
Moré, J.J., Garbow, B.S. and Hillstrom, K.E., Testing unconstrained optimization software. ACM Trans. Math. Software. v7. 17-41.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Applied Mathematics and Computation
Applied Mathematics and Computation  Volume 215, Issue 7
December, 2009
399 pages

Publisher

Elsevier Science Inc.

United States

Publication History

Published: 01 December 2009

Author Tags

  1. Convergence
  2. Descent method
  3. Line search
  4. Numerical result
  5. Unconstrained optimization

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 23 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media