skip to main content
research-article

Presburger liveness verification of discrete timed automata

Published: 18 April 2003 Publication History

Abstract

Using an automata-theoretic approach, we investigate the decidability of liveness properties (called Presburger liveness properties) for timed automata when Presburger formulas on configurations are allowed. While the general problem of checking a temporal logic such as TPTL augmented with Presburger clock constraints is undecidable, we show that there are various classes of Presburger liveness properties which are decidable for discrete timed automata. For instance, it is decidable, given a discrete timed automaton A and a Presburger property P, whether there exists an -path of A where P holds infinitely often. We also show that other classes of Presburger liveness properties are indeed undecidable for discrete timed automata, e.g., whether P holds infinitely often for each -path of A. These results might give insights into the corresponding problems for timed automata over dense domains, and help in the definition of a fragment of linear temporal logic, augmented with Presburger conditions on configurations, which is decidable for model checking timed automata.

References

[1]
R. Alur, Timed automata, in: Lecture Notes in Computer Science, Vol. 1633, Springer, Berlin, 1999, pp. 8-22.
[2]
R. Alur, C. Courcoubetis, D. Dill, Model-checking in dense real time, Inform. Comput., 104 (1993) 2-34.
[3]
R. Alur, D. Dill, A theory of timed automata, Theoret. Comput. Sci., 126 (1994) 183-236.
[4]
R. Alur, T. Feder, T.A. Henzinger, The benefits of relaxing punctuality, J. ACM, 43 (1996) 116-146.
[5]
R. Alur, T.A. Henzinger, Real-time logics, Inform. Comput., 104 (1993) 35-77.
[6]
R. Alur, T.A. Henzinger, A really temporal logic, J. ACM, 41 (1994) 181-204.
[7]
A. Bouajjani, S. Tripakis, S. Yovine, On-the-fly symbolic model-checking for real-time systems, in: Proc. 18th Real Time Systems Symposium (RTSS¿97), IEEE Computer Society Press, Silver Spring, MD, 1997, pp. 25-35.
[8]
A. Coen-Porisini, C. Ghezzi, R. Kemmerer, Specification of real-time systems using ASTRAL, IEEE Trans. Software Eng., 23 (1997) 572-598.
[9]
H. Comon, V. Cortier, Flatness is not a weakness, in: Lecture Notes in Computer Science, Vol. 1862, Springer, Berlin, 2000, pp. 262-276.
[10]
H. Comon, Y. Jurski, Timed automata and the theory of real numbers, in: Lecture Notes in Computer Science, Vol. 1664, Springer, Berlin, 1999, pp. 242-257.
[11]
Z. Dang, Binary reachability analysis of pushdown timed automata with dense clocks, in: Lecture Notes in Computer Science, Vol. 2102, Springer, Berlin, 2001, pp. 506-517.
[12]
Z. Dang, O.H. Ibarra, T. Bultan, R.A. Kemmerer, J. Su, Binary reachability analysis of discrete pushdown timed automata, in: Lecture Notes in Computer Science, Vol. 1855, Springer, Berlin, 2000, pp. 69-84.
[13]
Z. Dang, P. San Pietro, R.A. Kemmerer, On Presburger liveness of discrete timed automata, in: Lecture Notes in Computer Science, Vol. 2010, Springer, Berlin, 2001, pp. 132-143.
[14]
C. Dima, An algebraic theory of real-time formal languages, Ph.D. Dissertation, Verimag, Grenoble, 2001.
[15]
C. Heitmeyer, N. Lynch, The generalized railroad crossing, in: Proc. 15th Real-time Systems Symposium (RTSS¿94), IEEE Computer Society Press, Silver Spring, MD, 1994, pp. 120-131.
[16]
T.A. Henzinger, Z. Manna, A. Pnueli, What good are digital clocks?, in: Lecture Notes in Computer Science, Vol. 623, Springer, Berlin, 1992, pp. 545-558.
[17]
T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine, Symbolic model checking for real-time systems, Inform. Comput., 111 (1994) 193-244.
[18]
T.A. Henzinger, Pei-Hsin Ho, HyTech: the Cornell hybrid technology tool, in: Lecture Notes in Computer Science, Vol. 999, Springer, Berlin, 1995, pp. 265-294.
[19]
O.H. Ibarra, Reversal-bounded multicounter machines and their decision problems, J. ACM, 25 (1978) 116-133.
[20]
F. Laroussinie, K.G. Larsen, C. Weise, From timed automata to logic¿and back, in: Lecture Notes in Computer Science, Vol. 969, Springer, Berlin, 1995, pp. 529-539.
[21]
K.G. Larsen, P. Pattersson, W. Yi, UPPAAL in a nutshell, Internat. J. Software Tools Technol. Transfer, 1 (1997) 134-152.
[22]
J. Raskin, P. Schobben, State clock logic, in: Lecture Notes in Computer Science, Vol. 1201, Springer, Berlin, 1997, pp. 33-47.
[23]
V. Weispfenning, The complexity of almost linear Diophantine problems, J. Symb. Comp., 10 (1990) 395-403.
[24]
T. Wilke, Specifying timed state sequences in powerful decidable logics and timed automata, Lecture Notes in Computer Science, Vol. 863, Springer, Berlin, 1994, pp. 694-715.
[25]
S. Yovine, Kronos, Internat. J. Software Tools Technol. Transfer, 1 (1997) 123-133.
[26]
S. Yovine, Model checking timed automata, in: Lecture Notes in Computer Science, Vol. 1494, Springer, Berlin, 1998, pp. 114-152.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Theoretical Computer Science
Theoretical Computer Science  Volume 299, Issue 1
April 2003
788 pages

Publisher

Elsevier Science Publishers Ltd.

United Kingdom

Publication History

Published: 18 April 2003

Author Tags

  1. Liveness
  2. Model-checking
  3. Temporal logic
  4. Timed automata

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media