skip to main content
article

Process algebra for performance evaluation

Published: 18 March 2002 Publication History

Abstract

This paper surveys the theoretical developments in the field of stochastic process algebras, process algebras where action occurrences may be subject to a delay that is determined by a random variable. A huge class of resource-sharing systems - like large-scale computers, client-server architectures, networks - can accurately be described using such stochastic specification formalisms. The main emphasis of this paper is the treatment of operational semantics, notions of equivalence, and (sound and complete) axiomatisations of these equivalences for different types of Markovian process algebras, where delays are governed by exponential distributions. Starting from a simple actionless algebra for describing time-homogeneous continuous-time Markov chains, we consider the integration of actions and random delays both as a single entity (like in known Markovian process algebras like TIPP, PEPA and EMPA) and as separate entities (like in the timed process algebras timed CSP and TCCS). In total we consider four related calculi and investigate their relationship to existing Markovian process algebras. We also briefly indicate how one can profit from the separation of time and actions when incorporating more general, non-Markovian distributions.

References

[1]
M. Ajmone Marsan, G. Balbo, C. Conte, Performance Models of Multiprocessor Systems, MIT Press, Cambridge, MA, 1986.]]
[2]
M. Ajmone Marsan, G. Balbo, C. Conte, S. Donatelli, G. Franceschinis, Modelling with Generalized Stochastic Petri Nets, Wiley, New York, 1995.]]
[3]
M. Ajmone Marsan, A. Bianco, L. Ciminiera, R. Sisto, A. Valenzano, A LOTOS extension for the performance analysis of distributed systems, IEEE/ACM Trans. Networking 2 (2) (1994) 151-164.]]
[4]
R. Alur, D.L. Dill, A theory of timed automata, Theoret. Comput. Sci, 126 (1994) 183235.]]
[5]
J.C.M. Baeten, J.A. Bergstra, Real time process algebra, Formal Aspects Comput. 3 (2) (1991) 142-188.]]
[6]
J.C.M. Baeten, J.A. Bergstra, S.A. Smolka, Axiomatizing probabilistic processes: ACP with generative probabilities, Inform. and Comput. 121 (1995) 234-255.]]
[7]
C. Baler, H. Hermanns, Weak bisimulation for fully probabilistic processes, in: 0. Grumberg (Ed.), Computer-Aided Verification, Lecture Notes in Computer Science, vol. 1254, Springer, Berlin, 1997, pp. 119-130.]]
[8]
C. Baier, J.-P. Katoen, H. Hermanns, Approximate symbolic model checking of continuoustime Markov chains, in: J.C.M. Baeten, S. Mauw (Eds.), Concurrency Theory, Lecture Notes in Computer Science, vol. 1664, Springer. Berlin, 1999, pp. 146-162.]]
[9]
M. Bernardo, An algebra-based method to associate rewards with EMPA terms, in: P. Degano, R. Gorrieri (Eds.), Automata, Languages and Programming, Lecture Notes in Computer Science, vol. 256, Spnnger, Berlin, 1997, pp. 358-368.]]
[10]
M. Bernardo, R. Cleaveland, S. Sims, W. Stewart, TwoTowers: a tool integrating functional and performance analysis of concurrent systems, in: S. Budkowski, A. Cavaili, E. Najm (Eds.), Proc. Joint Internal. Conf. on Formal Description Techniques for Distributed Systems and Communication Protocols and Protocol Spec., Testing, and Ver., Kluwer, Dordrecht, 1998, pp. 457-467.]]
[11]
M. Bernardo, L. Donatiello, R. Gorrieri, Modeling and analyzing concurrent systems with MPA, in: U. Herzog, M. Rettelbach (Eds.), Proc. 2nd Workshop on Process Algebra and Performance Modelling, Arbeitsbericht, vol. 27(4), U. Erlangen-Nürnberg, 1994, pp. 7188.]]
[12]
M. Bernardo, R. Gorrieri, A tutorial on EMPA: a theory of concurrent processes with nondeterminism, priorities, probabilities and time, Theoret. Comput. Sci. 202 (1998) 1-54.]]
[13]
M. Bernardo, R. Gorrieri, M. Roccetti, Formal performance modelling and evaluation of an adaptive mechanism for packetised audio over the Internet, Formal Aspects Comput. 10 (1999) 313-337.]]
[14]
H.C. Bohnenkamp, B.R. Haverkort, Semi-numerical solution of stochastic process algebra models, in: J.-P, Katoen (Ed.), Formal Methods for Real-Time and Probabilistic Systems, Lecture Notes in Computer Science, vol. 1601, Springer, Berlin, 1999, pp. 228-244.]]
[15]
T. Bolognesi, F. Lucidi, S. Trigila, Converging towards a timed LOTOS standard, Comput. Standards Interfaces 16 (1994) 87-118.]]
[16]
M. Bravetti, M. Bernardo, R. Gorrieri, Towards performance evaluation with general distributions in process algebras, in: D. Sangiorgi, R. de Simone (Eds.), Concurrency Theory, Lecture Notes in Computer Science, vol. 1466, Springer, Berlin, 1998, pp. 405-422.]]
[17]
E. Brinksma, J.-P. Katoen, R. Langerak, D. Latella, Performance analysis and true concurrency semantics, in: T. Rus, C. Rattray (Eds.), Theories and Experiences for Real-Time System Development, World Scientific 1994, pp. 309-337.]]
[18]
E. Brinksma, J.-P. Katoen, R. Langerak, D. Latella, A stochastic causality-based process algebra, Comput. J. 38 (7) (1995) 552-565.]]
[19]
P. Buchholz, Exact and ordinary lumpability in finite Markov chains, J. AppI. Probab. 31 (1994) 59-75.]]
[20]
P. Buchhloz, Markovian process algebra: composition and equivalence, in: U. Herzog, M. Rettelbach (Eds.), Proc. 2nd Workshop on Process Algebra and Performance Modelling, Arbeitsbericht, vol. 27(4), U. Erlangen-Nürnberg, 1994, pp. 11-30.]]
[21]
G. Clark, Formalising the specification of rewards with PEPA, in: M. Ribaudo (Ed.), Proc. 4th Internat. Workshop on Process Algebra and Performance Modelling, C.L.U.T. Press, 1996, pp. 139-160.]]
[22]
D.R. Cox, A use of complex probabilities in the theory of stochastic processes, Proc. Cambridge Philos. Soc. 51 (1955) 313-319.]]
[23]
P.R. D'Argenio, E. Brinksma, A calculus for timed automata (extended abstract), in: B. Jonsson, J. Parrow (Eds.), Formal Techniques in Real-Time and Fault Tolerant Systems, Lecture Notes in Computer Science, vol. 1135, Springer, Berlin, 1996, pp. 110-129.]]
[24]
P.R. D'Argenio, H. Hermanns, J.-P. Katoen, On generative parallel composition, Electron. Notes in Theoret. Comput. Sci. 22 (1999).]]
[25]
P.R. D'Argenio, J.-P. Katoen, E. Brinksma, An algebraic approach to the specification of stochastic systems (extended abstract), in: D. Gries, W.-P. de Roever (Eds.), Programming Concepts and Methods, Chapman & Hall, London, 1998, pp. 126-147.]]
[26]
P.R. D'Argenio, J.-P. Katoen, E. Brinksma, General purpose discrete-event simulation using, in C. Priami (Ed.), Proc. 6th Internat. Workshop on Process Algebra and Performance Modelling, Tech. Rep., Universit di Verona, 1998, pp. 85-102.]]
[27]
P.R. D'Argenio, J.-P. Katoen, E. Brinksma, A compositional approach to generalised semiMarkov processes, in: A. Guia, M. Spathopoulos, R. Smedinga (Eds.), Proc. 4th Internat. Workshop on Discrete-Event Systems, lEE Press, New York, 1998, pp. 391-397.]]
[28]
P.R. D'Argenio, C. Verhoef, A general conservative extension theorem in process algebras with inequalities, Theoret. Comput. Sci. 177 (2) (1997) 351-380.]]
[29]
L. de Alfaro, How to specify and verify the long-run average behavior of probabilistic systems, in Proc. 13th Annual IEEE Symposium on Logic in Computer Science (LICS'98), pp. 454-465, LICS, 1998.]]
[30]
C. Derman, Finite-State Markovian Decision Processes, Academic Press, New York, 1970.]]
[31]
D. Ferrari, Considerations on the insularity of performance evaluation, IEEE Trans. Software Eng. 12 (6) (1986) 678-683.]]
[32]
A.J. Field, P.G. Harrison, K. Kanani, Automatic generation of verifiable cache coherence simulation models from high-level specifications, Austral. Comput. Sci. Comm. 20 (3) (1998) 261-275.]]
[33]
S. Gilmore, J. Hillston, The PEPA workbench: a tool to support a process algebra-based approach to performance modelling, in: G. Haring, G. Kotsis (Eds.), Modelling Techniques and Tools for Computer Performance Evaluation, Lecture Notes in Computer Science, vol. 794, Springer, Berlin, 1994, pp. 353-368.]]
[34]
S. Gilmore, J. Hillston, R. Holton, M. Rettelbach, Specifications in stochastic process algebra for a robot control problem, Internat. J. Production Res. 34 (4) (1996) 1065-1080.]]
[35]
R.J. van Glabbeek, S.A. Smolka, B. Steffen, Reactive, generative, and stratified models of probabilistic processes, Inform. and Comput. 121 (1995) 59-80.]]
[36]
R.J. van Glabbeek, W.P. Weijland, Branching time and abstraction in bisimulation semantics, J. ACM 43 (3) (1996) 555-600.]]
[37]
J.C. Godskesen, K.G. Larsen, Real-time calculi and expansion theorems, in: R.K. Shyamasundar (Ed.), Foundations of Software Technology and Theoretical Computer Science, Lecture Notes in Computer Science, vol. 652, Springer, Berlin, 1992, pp. 302-316.]]
[38]
N. Gtz, Stochastische Prozealgebren-Integration von Funktionalem Entwurf und Leistungsbewertung Verteiher Systeme, Ph.D. Thesis, U. Erlangen-Nürnberg, 1994.]]
[39]
N. Gtz, U. Herzog, M. Rettelbach, Multiprocessor and distributed system design: the integration of functional specification and performance analysts using stochastic process algebras, in: L. Donatiello, R. Nelson (Eds.), Performance Evaluation of Computer and Communication Systems, Lecture Notes to Computer Science, vol. 729, Springer, Berlin, 1993, pp. 121-146.]]
[40]
J.F. Groote, M.A. Reniers, Algebraic process verification, in: Handbook of Process Algebra, Elsevier Science, 2000.]]
[41]
G. Hachtel, E. Macii, A. Padro, F. Somenzi, Markovtan analysis of large finite-state machines, IEEE Trans. Comput. Aided Design Integrated Circuits Systems 15 (12) (1996) 1479-1493.]]
[42]
H. Hansson, Time and Probability in Formal Design of Distributed Systems, Elsevier, Amsterdam. 1994.]]
[43]
H. Hansson, B. Jonsson, A calculus for communicating systems with time and probabilities, Proc. 11th IEEE Real-Time Systems Symp., 1990, pp. 278-287.]]
[44]
P.G. Harrison, J. Hillston, Exploiting quasi-reversible structures in Markovian process algebra models, Comput. J. 38 (7) (1995) 510-520.]]
[45]
P.G. Harrison, B. Strulo, Stochastic process algebra for discrete event simulation, in: F. Baccelli, A. Jean-Marie, I. Mitrani (Eds.), Quantitative Methods in Parallel Systems, Springer, Berlin, 1995, pp. 18-37.]]
[46]
C. Harvey, Performance engineering as an integral part of system design, British Telecom Technol. J. 4 (3) (1986) 142-147.]]
[47]
H. Hermanns, Interactive Markov chains, Ph.D. Thesis, U. Erlangen-Nürnberg, 1998.]]
[48]
H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, M. Siegle, Compositional performance modelling with the TIPP-TOOL, Performance Evaluation 39 (2000) 5-35.]]
[49]
H. Hermanns, U. Herzog, V. Mertsiotakis, Stochastic process algebras as a tool for performance and dependability modelling, Proc. IEEE Internist. Computer Performance and Dependability Symp. 1995 pp. 102-Ill.]]
[50]
H. Hermanns, U. Herzog, V. Mertsiotakis, Stochastic process algebras: between LOTOS and Marko chains, Comput. Networks ISDN Systems 30 (9/1O) (1998) 901-924.]]
[51]
H. Hermanns, J.-P. Katoen, Automated compositional Markov chain generation for a plainold telephone system, Sci. Comput. Programming 36 (2000) 97-127.]]
[52]
H. Hermanns, M. Lohrey, Prionty and maximal progress are completely axiomatisable (extended abstract), in: D. Sangiorgi, R. de Simone (Eds.), Concurrency Theory, Lecture Notes in Computer Science, vol. 1466, Springer, Berlin, 1998, pp. 237-252.]]
[53]
H. Hermanns, J. Meyer-Kayser, M. Siegle, Multi terminal binary decision diagrams to represent and analyse continuous time Markov chains, in: B. Plateau, W.J. Stewart (Eds.), Proc. 3rd Internat. Workshop on Numerical Solution of Markov Chains, Prensas Universitarias de Zaragoza, Zaragoza, 1999.]]
[54]
H. Hermanns, M. Rettelbach, Syntax, semantics, equivalences, and axioms for MTIPP, in: U. Herzog, M. Rettelbach (Eds.), Proc. 2nd Workshop on Process Algebra and Performance Modelling, Arbeitsbericht, vol. 27(4), U. Erlangen-Nürnberg, 1994, pp. 71-88.]]
[55]
H. Hermanns, M. Rettelbach, Towards a superset of LOTOS for performance prediction, in: M. Ribaudo (Ed.), Proc. 4th Internat. Workshop on Process Algebra and Performance Modelling, C.L.U.T. Press, 1996, pp. 77-94.]]
[56]
H. Hermanns, M. Rettelbach, T. Weiss, Formal characterisation of immediate actions in SPA with non-deterministic branching, Comput. J. 38 (7) (1995) 530-542.]]
[57]
H. Hermanns, M. Siegle, Bisimulation algorithms for stochastic process algebras and their BDD-based implementation, in: J.-P. Katoen (Ed.), Formal Methods for Real-Time and Probabilistic Systems, Lecture Notes in Computer Science, vol. 1601, Springer, Berlin, 1999, pp. 244-265,]]
[58]
U. Herzog, Formal description, time and performance analysis: a framework, in: T. Hrder, H. Wedekind, . Zimmermann (Eds.), Entwurf und Betrieb Verteilter Systeme, Informatik Fach-Berichte, vol. 264, Springer, Berlin, 1990.]]
[59]
U. Herzog, A concept for graph-based stochastic process algebras, generally distributed activity times, and hierarchical modelling, in: M. Ribaudo (Ed,), Proc. 4th Internat. Workshop on Process Algebra and Performance Modelling, C.L.U.T. Press, 1996, pp. 1-20.]]
[60]
U. Herzog, V. Mertsiotakis, Stochastic process algebras applied to failure modelling, in: U. Herzog. M. Rettelbach (Eds.). Proc. 2nd Workshop on Process Algebra and Performance Modelling, Arbeitsbericht, vol. 27(4), U. Erlangen-Nürnberg, 1994, pp. 107-126.]]
[61]
U. Herzog, M. Rettelbach (Eds.), Proc. 2nd Workshop on Process Algebra and Performance Modelling, Arbeitsbericht, vol. 27(4), U. Erlangen-Nürnberg, 1994.]]
[62]
J. Hillston, PEPA: performance enhanced process algebra, Tech. Rep. CSR-24-93, U. Edinburgh, 1993.]]
[63]
J. Hillston, A Compositional Approach to Performance Modelling, Cambridge University Press, Cambridge, 1996.]]
[64]
J. Hillston, Exploiting symmetry in solution: decomposing composed models, in: C. Priami (Ed.), Proc. 6th Internat. Workshop on Process Algebra and Performance Modelling, Tech. Rep., Univcrsit di Verona, 1998, pp. 1-15.]]
[65]
J. Hillston, V. Mertsiotakis, A simple time scale decomposition technique for stochastic process algebras, Comput. J. 38 (7) (1995) 566-577.]]
[66]
J. Hillston, N. Thomas, A syntactic analysis of reversible PEPA processes, in: C. Priami (Ed.), Proc. 6th Internat. Workshop on Process Algebra and Performance Modelling, Tech. Rep., Universit di Verona, 1998, pp. 37-50.]]
[67]
J. Hillston, N. Thomas, Product-form solutions for a class of PEPA models, Performance Evaluation 35 (3) (1999) 171-192.]]
[68]
K. Kanani, A Unified Framework for Systematic Quantitative and Qualitative Analysis of Communicating Systems, Imperial College, Univ. of London, 1998.]]
[69]
J.-P. Katoen (Ed.), Formal Methods for Real-Time and Probabilistic Systems, Lecture Notes in Computer Science, 1601, Springer, Berlin, 1999.]]
[70]
J.-P. Katoen, E. Brinksma, D. Latella, R. Langerak, Stochastic simulation of event structures, in: M. Ribaudo (Ed.), Proc. 4th Internat. Workshop on Process Algebra and Performance Modelling, C.L.U.T. Press, 1996, pp. 21-40.]]
[71]
J.G. Kemeny, J.L. Snell, Finite Markov Chains, Van Nostrand, Princeton, NJ, 1960.]]
[72]
U. Klehmet, Extensions of stochastic process algebras for performance and dependability modelling, Proc. 12th Eur. Simulation Multiconf., 1998, pp. 771-775.]]
[73]
H. Kobayashi, Modelling and Analysis: An Introduction to System Performance Evaluation Methodology, Addison-Wesley, Reading, MA, 1978.]]
[74]
K.G. Larsen, A. Skou, Bisimulation through probabilistic testing, Inform. and Comput. 94 (1) (1992) 1-28.]]
[75]
L. Lonard, G. Leduc, An introduction to ET-LOTOS for the description of time-sensitive systems, Comput. Networks and ISDN Systems 29 (3) (1997) 271-292.]]
[76]
G. Lowe, Probabilistic and prioritized models of timed CSP, Theoret. Comput. Sci. 138 (1995) 315-352.]]
[77]
V. Mertsiotakis, Approximate analysis methods for stochastic process algebras, Ph.D. Thesis, U. Erlangen-Nürnberg, 1998.]]
[78]
V. Mertsiotakis, M. Silva, Throughput approximation of decision-free processes using decomposition, Proc. 7th Internat. Workshop on Petri Nets and Performance Models, IEEE CSPress, Silverspring, MD, 1997, pp. 174-182.]]
[79]
C. Miguel, A. Fernndez, L. Vidaller, LOTUS extended with probabilistic behaviours, Formal Aspects Comput. 5 (1993) 253-281.]]
[80]
F. Molter, C. Tofts, A temporal calculus of communicating systems, in: J.C.M. Baeten, J.W. Klop (Eds.), Concur'90: Theories of Concurrency Unification and Extension, Lecture Notes in Computer Science, vol. 458, Springer, Berlin, 1990, pp. 401-415.]]
[81]
M.F. Neuts, Matrix-geometric Solutions in Stochastic Models An Algorithmic Approach, The Johns Hopkins University Press, Baltimore, MD, 1981.]]
[82]
X. Nicollin, J. Sifakis, An overview and synthesis on timed process algebras, in: J.W. de Bakker, et al., (Eds.), Real-Time: Theory in Practice, Lecture Notes in Computer Science, vol. 600, Springer, Berlin, 1992, pp. 526-548.]]
[83]
N.M. Nounou, A methodology for specification-based performance analysis of protocols, Ph.D. Thesis, Columbia University, 1986.]]
[84]
N.M. Nounou, Y. Yemini, Algebraic specification-based performance analysis of communication protocols, in: Y. Yemini, R. Strom, S. Yemini (Eds.), Protocol Spec., Testing, and Ver. IV, North-Holland, Amsterdam, 1985, pp. 541-560.]]
[85]
B. Plateau, K. Atif, Stochastic automata networks for modelling parallel systems, IEEE Trans. Software Eng. 17 (10) (1991) 1093-1108.]]
[86]
C. Priami, Stochastic -calculus, Comput. J. 38 (7) (1995) 578-589.]]
[87]
C. Priami, Stochastic -calculus with general distributions, in: M. Ribaudo (Ed.), Proc. 4th Internat. Workshop on Process Algebra and Performance Modelling, C.L.U.T. Press, 1996, pp. 41-57.]]
[88]
C. Priami (Ed.), Proc. 6th Internat. Workshop on Process Algebra and Performance Modelling, Tech. Rep., Universit di Verona, 1998.]]
[89]
M. Ribaudo (Ed.), Proc. 4th Internat. Workshop on Process Algebra and Performance Modelling, C.L.U.T. Press, Torino, 1996.]]
[90]
N. Rico, G. von Bochmann, Performance description and analysis for distributed systems using a variant of LOTUS, in: B. Jonsson, J. Parrow, B. Pehrson (Eds.), Protocol Spec., Testing, and Ver. IX, North-Holland, Amsterdam, 1991, pp. 199-213.]]
[91]
R.A. Sahner, K.S. Trivedi, Performance and reliability analysis using directed acyclic graphs, IEEE Trans. Software Eng. 13 (10) (1987) 1105-1114.]]
[92]
S. Schneider, An operational semantics for timed CSP, Inform. and Comput. 116 (1995) 193-213.]]
[93]
J. Schot, The role of Architectural Semantics in the formal approach towards Distributed Systems Design. Ph.D. thesis, University of Twente, Enschede, The Netherlands, 1992.]]
[94]
R. Segala, N.A. Lynch, Probabilistic simulations for probabilistic processes, Nordic J. Comput. 2 (2) (1995) 250-273.]]
[95]
M. Sereno, Towards a product-form solution of stochastic process algebras, Comput. J. 38 (7) (1995) 622-632.]]
[96]
G.S. Shedler, Regenerative Stochastic Simulation, Academic Press, Inc., New York, 1993.]]
[97]
W.J. Stewart, Introduction to the Numerical Solution of Markov Chains, Princeton University Press, Princeton, NJ, 1994.]]
[98]
R. von Stieglitz, Messung und Bewertuog des dynamischen Verhaltens eines Kommunikationssysiem-Prototypen für Breitband-ISDN (BERKOM), MSc. Thesis, U. ErlangenNürnberg, 1990.]]
[99]
B. Strulo, A process algebra for discrete-event simulation, Ph.D. Thesis, Imperial College, U. London, 1993.]]
[100]
C. Tofts, Processes with probabilities, priorities and time, Formal Aspects Comput. 6 (5) (1994) 536-564.]]
[101]
C. Tofts, Compositional performance analysis, in: E. Brinksma (Ed.), Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes in Computer Science, vol. 1217, Springer, Berlin. 1997, pp. 290-305.]]
[102]
A. Valderrutten, 0. Hjiej, A. Benzekri, D. Gazal, Deriving queuing networks performance models from annotated LOTOS specifications, in: R. Pooley, J. Hillston (Eds.), Computer Performance Evaluation Modelling Techniques and Tools, Edinburgh University Press, Edinburgh, 1992, pp. 167-178.]]
[103]
M.Y. Vardi, Automatic verification of probabilistic concurrent finite state programs, Proc. 26th Symp. on Foundations of Computer Science, 1985, pp. 327-338.]]
[104]
W. Yi, Real-time behaviour of asynchronous agents, in: J.C.M. Bacon, J.-W. KIop (Eds.), Concur'90 Theories of Concurrency Unification and Extension, Lecture Notes in Computer Science, vol. 455, Springer, Berlin, 1990, pp. 502-520.]]
[105]
I. Weigel, Modelle für Entwurf and Bewertung eines dynamischen Lastverbunds lose gekoppelter Rechensysteme, Ph.D. Thesis, U. Erlangen-Nürnberg, 1994.]]
[106]
S.-H. Wu, S.A. Smolka, E.W. Stark, Composition and behaviors of probabilitistic I/O automata, Theoret. Comput. Sci. 176 (1/2) (1997) 1-38.]]
[107]
A.N. Shiryaev, Probability, Vol 95 of Graduate Texts in Mathematics, Springer, Berlin, 1996.]]
[108]
M. Bravetti and M. Bernardo, Compositional Asymmetric Cooperations for Process Algebras with Probabilities, Priorities, and Time. In Proc. of the 1st Workshop on Models for Time-Critical Systems (MTCS 2000). State College (PA), August 2000, in appear in Electronic Notes in Theoretical Computer Science.]]

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Theoretical Computer Science
Theoretical Computer Science  Volume 274, Issue 1-2
March 6, 2002
270 pages

Publisher

Elsevier Science Publishers Ltd.

United Kingdom

Publication History

Published: 18 March 2002

Author Tags

  1. axiomatisation
  2. bisimulation
  3. continous-time Markov chain
  4. lumpability
  5. performance evaluation
  6. process algebra
  7. resource-sharing systems
  8. sematics

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media