Follow the perturbed approximate leader for solving semi-bandit combinatorial optimization
Abstract
References
Index Terms
- Follow the perturbed approximate leader for solving semi-bandit combinatorial optimization
Recommendations
Follow-the-perturbed-leader for adversarial Markov decision processes with bandit feedback
NIPS '22: Proceedings of the 36th International Conference on Neural Information Processing SystemsWe consider regret minimization for Adversarial Markov Decision Processes (AMDPs), where the loss functions are changing over time and adversarially chosen, and the learner only observes the losses for the visited state-action pairs (i.e., bandit ...
Multi-armed bandit problem with known trend
We consider a variant of the multi-armed bandit model, which we call multi-armed bandit problem with known trend, where the gambler knows the shape of the reward function of each arm but not its distribution. This new problem is motivated by different ...
Online Learning over a Finite Action Set with Limited Switching
This paper studies the value of switching actions in the Prediction From Experts problem (PFE) and Adversarial Multiarmed Bandits problem (MAB). First, we revisit the well-studied and practically motivated setting of PFE with switching costs. Many ...
Comments
Information & Contributors
Information
Published In
Publisher
Springer-Verlag
Berlin, Heidelberg
Publication History
Author Tags
Qualifiers
- Research-article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0