skip to main content
article

Handling multiple objectives with biogeography-based optimization

Published: 01 February 2012 Publication History

Abstract

Biogeography-based optimization (BBO) is a new evolutionary optimization method inspired by biogeography. In this paper, BBO is extended to a multi-objective optimization, and a biogeography-based multi-objective optimization (BBMO) is introduced, which uses the cluster attribute of islands to naturally decompose the problem. The proposed algorithm makes use of nondominated sorting approach to improve the convergence ability efficiently. It also combines the crowding distance to guarantee the diversity of Pareto optimal solutions. We compare the BBMO with two representative state-of-the-art evolutionary multi-objective optimization methods, non-dominated sorting genetic algorithm-II (NSGA-II) and archive-based micro genetic algorithm (AMGA) in terms of three metrics. Simulation results indicate that in most cases, the proposed BBMO is able to find much better spread of solutions and converge faster to true Pareto optimal fronts than NSGA-II and AMGA do.

References

[1]
J. D. Schaffer. Multiple objective optimization with vector evaluated genetic algorithms. In Proceedings of the First International Conference on Genetic Algorithms, ACM, Hillsdale, USA, pp. 93-100, 1985.
[2]
E. Zitzler, M. Laumanns, S. Bleuler. A tutorial on evolutionary multiobjective optimization. Metaheuristics for Multiobjective Optimization, X. Gandibleux, Ed., Berlin, Germany: Springer-Verlag, pp. 3-38, 2003.
[3]
E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, V. G. Fonseca. Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation, vol. 7, no. 2, pp. 117-132, 2003.
[4]
T. K. Liu, C. H. Chen, Z. S. Li, J. H. Chou. Method of inequalities-based multiobjective genetic algorithm for optimizing a cart-double-pendulum. International Journal of Automation and Computing, vol. 6, no. 1, pp. 29-37, 2009.
[5]
S. C. Chiam, K. C. Tan, A. A. Mamum. Evolutionary multi-objective portfolio optimization in practical context. International Journal of Automation and Computing, vol. 5, no. 1, pp. 67-80, 2008.
[6]
F. Kursawe. A variant of evolution strategies for vector optimization. Parallel Problem Solving from Nature, H. P. Schwefel, R. Manner, Ed., Berlin, Germary: Springer-Verlag, pp. 193-197, 1991.
[7]
M. Laumanns, E. Zitzler, L. Thiele. A unified model for multi-objective evolutionary algorithms with elitism. In Proceedings of the 2000 Congress on Evolutionary Computation, IEEE, La Jolla, USA, vol. 1, pp. 46-53, 2000.
[8]
E. Zitzler, L. Thiele. Multiobjective optimization using evolutionary algorithms-a comparative study. Parallel Problem Solving from Nature V, A. E. Eiben, Ed., Berlin, Germany: Springer-Verlag, pp. 292-301, 1998.
[9]
F. G. Zhao, J. S. Sun, S. J. Li, W. M. Liu. A hybrid genetic algorithm for the traveling salesman problem with pickup and delivery. International Journal of Automation and Computing, vol. 6, no. 1, pp. 97-102, 2009.
[10]
V. L. Huang, A. K. Qin, P. N. Sugnanthan, M. F. Tasgetiren. Multi-objective optimization based on self-adaptive differential evolution algorithm. In Proceedings of IEEE Congress on Evolutionary Computation, IEEE, Singapore, pp. 3601-3608, 2007.
[11]
Z. Karin, L. Rainer. Differential evolution with adaptive parameter setting for multi-objective optimization. In Proceedings of IEEE Congress on Evolutionary Computation, IEEE, Singapore, pp. 3585-3592, 2007.
[12]
C. A. C. Coello, G. T. Pulido, M. S. Lechuga. Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 256-279, 2004.
[13]
B. Xin, J. Chen, Z. H. Peng, F. Pan. An adaptive hybrid optimizer based on particle swarm and differential evolution for global optimization. Science China Information Sciences, vol. 53, no. 5, pp. 980-989, 2010.
[14]
D. Simon. Biogeography-based optimization. IEEE Transactions on Evolutionary Computation, vol. 12, no. 6, pp. 702-713, 2008.
[15]
D. W. Du, D. Simon, M. Ergezer. Biogeography-based optimization combined with evolutionary strategy and immigration refusal. In Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, IEEE, San Antonio, USA, pp. 997-1002, 2009.
[16]
M. Ergezer, D. Simon, D. W. Du. Oppositional biogeography-based optimization. In Proceedings of the IEEE Conference on Systems, Man, and Cybernetics, IEEE, San Antonio, USA, pp. 1009-1014, 2009.
[17]
H. P. Ma, S. H. Ni, M. Sun. Equilibrium species counts and migration model tradeoffs for biogeography-based optimization. In Proceedings of the 48th IEEE Conference on Decision and Control, IEEE, Shanghai, PRC, pp. 3306-3310, 2009.
[18]
R. Rarick, D. Simon, F. E. Villaseca, B. Vyakaranam. Biogeography-based optimization and the solution of the power flow problem. In Proceedings of IEEE Conference on Systems, Man, and Cybernetics, IEEE, San Antonio, USA, pp. 1003-1008, 2009.
[19]
H. Kundra, A. Kaur, V. Panchal. An integrated approach to biogeography based optimization with case based reasoning for retrieving groundwater possibility. In Proceedings of the 8th Annual Asian Conference and Exhibition on Geospatial Information, Technology and Applications, Singapore, 2009.
[20]
V. K. Panchal, P. Singh, N. Kaur, H. Kundra. Biogeography based satellite image classification. International Journal of Computer Science and Information Security, vol. 6, no. 2, pp. 269-274, 2009.
[21]
K. Deb, A. Pratap, S. Agarwal, T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002.
[22]
S. Tiwari, G. Fadel, P. Koch, K. Deb. Amga: An archive-based micro genetic algorithm for multi-objective optimization. In Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, ACM, Atlanta, USA, pp. 729-736, 2008.
[23]
M. Lomolino, B. Riddle, J. Brown. Biogeography, Sunderland, UK: Sinauer Associates, 2009.
[24]
R. Whittaker. Island Biogeography, Oxford, England: Oxford University Press, 1998.
[25]
H. P. Ma. An analysis of the equilibrium of migration models for biogeography-based optimization. Information Sciences, vol. 180, no. 18, pp. 3444-3464, 2010.
[26]
E. Cantu-paz. A Survey of Parallel Genetic Algorithms, Technical Report 97003, Department of Computer Science, Illinois Genetic Algorithms Laboratory, 1998.
[27]
A. L. Jaimes, C. A. C. Coello. MRMOGA: Parallel evolutionary multiobjective optimization using multiple resolutions. In Proceedings of the IEEE Congress on Evolutionary Computation, IEEE, Munchen, Germany, vol. 3, pp. 2294-2301, 2005.
[28]
C. A. C. Coello, G. T. Pulido. A micro-genetic algorithm for multiobjective optimization. Lecture Notes in Computer Science, vol. 1993-2001, pp. 126-140, 2001.
[29]
C. M. Fonseca, P. J. Fleming. Multiobjective optimization and multiple constraint handling with evolutionary algorithms-part I: A unified formulation. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 28, no. 1, pp. 26-37, 1998.
[30]
C. Poloni. Hybrid GA for multiobjective aerodynamic shape optimization. Genetic Algorithms in Engineering and Computer Science, G. Winter, J. Periaux, M. Galan, P. Cuesta, Ed., New York, USA: Wiley, PP. 397-414, 1997.
[31]
E. Zitzler, K. Deb, L. Thiele. Comparison of multi-objective evolutionary algorithms: Empirical results. Evolutionary Computation, vol. 8, no. 2, pp. 173-195, 2000.
[32]
Q. Zhang, A. Zhou, S. Z. Zhao, P. N. Suganthan, W. Liu, S. Tiwari. Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition, Technical Report CES-887, University of Essex and Nanyang Technological University, 2008, {Online}, Available: http://dces.essex.ac.uk/staff/qzhang/moeacompetition09. htm, January 1, 2011.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image International Journal of Automation and Computing
International Journal of Automation and Computing  Volume 9, Issue 1
February 2012
112 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 February 2012

Author Tags

  1. Multi-objective optimization
  2. Pareto optimal
  3. biogeography-based optimization (BBO)
  4. evolutionary algorithms
  5. nondominated sorting

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media