Decompositions and coalescing eigenvalues of symmetric definite pencils depending on parameters
Abstract
References
Index Terms
- Decompositions and coalescing eigenvalues of symmetric definite pencils depending on parameters
Recommendations
Coalescing points for eigenvalues of banded matrices depending on parameters with application to banded random matrix functions
In this work, we develop and implement new numerical methods to locate generic degeneracies (i.e., isolated parameters' values where the eigenvalues coalesce) of banded matrix valued functions. More precisely, our specific interest is in two classes of ...
Approximating Coalescing Points for Eigenvalues of Hermitian Matrices of Three Parameters
We consider a Hermitian matrix valued function $A(x)\in \mathbb{C}^{n\times n}$, smoothly depending on parameters $x\in \Omega\subset \mathbb{R}^3$, where $\Omega$ is an open bounded region of ${\mathbb R}^3$. We develop an algorithm to locate parameter ...
Distance Problems for Hermitian Matrix Pencils with Eigenvalues of Definite Type
Given a Hermitian matrix pencil $L(z) = zA - B$ with only real eigenvalues that are either of positive or negative type, the distance to a nearest Hermitian pencil outside the class is considered with respect to a specified norm. These problems are ...
Comments
Information & Contributors
Information
Published In
Publisher
Springer-Verlag
Berlin, Heidelberg
Publication History
Author Tags
Author Tags
Qualifiers
- Research-article
Funding Sources
- Università degli Studi di Bari Aldo Moro
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0