skip to main content
article

Competition and evolution in virtual plant communities: a new modeling approach

Published: 01 June 2009 Publication History

Abstract

This article presents studies on plants and their communities through experiments with a multi-agent platform of generic virtual plants. Based on Artificial Life concepts, the model has been designed for long-term simulations spanning a large number of generations while emphasizing the most important morphological and physiological aspects of a single plant. The virtual plants combine a physiological transport-resistance model with a morphological model using the L-system formalism and grow in a simplified 3D artificial ecosystem. Experiments at three different scales are carried out and compared to observations on real plant species. At the individual level, single virtual plants are grown in order to examine their responses to environmental constraints. A number of emerging characteristics concerning individual plant growth can be observed. Unifying field observation, mathematical theory and computer simulation, population level experiments on intraspecific and interspecific competition for resources are related to corresponding aggregate models of population dynamics. The latter provide a more general understanding of the experiments with respect to long-term trends and equilibrium conditions. Studies at the evolutionary level aim at morphogenesis and the influence of competition on plant morphology. Among other results, it is shown how the struggle for resources induces an arms race that leads to the evolution of elongated growth in contrast to rather ample forms at ground-level when the plants evolve in isolation.

References

[1]
Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisted: a reevaluation of processes and patterns. Adv Ecol Res 30:1-67.
[2]
Allen M, Prusinkiewicz P, DeJong T (2005) Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees: the L-PEACH model. New Phytol 166:869-880.
[3]
Alsweis M, Deussen O (2005) Modeling and visualization of symmetric and asymmetric plant competition. Eurographics workshop on natural phenomena, pp 83-88.
[4]
Alsweis M, Deussen O (2006) Efficient simulation of vegetation using light and nutrition competition. In: Proceedings of the 17th conference on simulation and visualization, pp 35-48.
[5]
AMAP website, http://amap.cirad.fr. April 2008.
[6]
Berryman A (2002) Population: a central concept for ecology? Oikos 97(3):439-442.
[7]
Bidel LPR, Pagès L, Rivière LM, Pelloux G, Lorendeau JY (2000) MassFlowDyn I: a carbon transport and partitioning model for root system architecture. Ann Bot 85:869-886.
[8]
Bornhofen S, Lattaud C (2006a) Evolutionary design of virtual plants. In: Proceedings of CGVR. Las Vegas, USA, pp 28-34.
[9]
Bornhofen S, Lattaud C (2006b) Life history evolution of virtual plants: trading off between growth and reproduction. In: Proceedings of PPSN IX. Reykjavik, Iceland, pp 808-817.
[10]
Bornhofen S, Lattaud C (2007) Evolution of virtual plants interacting with their environment. In: Proceedings of VRIC. Laval, France, pp 172-176.
[11]
Bornhofen S, Lattaud C (2008) On hopeful monsters, neutral networks and junk code in evolving L-systems. In: Proceedings of GECCO. Atlanta, USA (to be published).
[12]
Boullard B (1999) Guerre et paix dans le règne végétal. Edition Ellipse.
[13]
Chelle M, Andrieu B (2007) Modelling the light environment of virtual crop canopies. In: Vos J, Marcelis LFM, de Visser PHB, Struik PC, Evers JB (eds) Functional-structural plant modelling in crop production. Springer, Netherlands, pp 75-89.
[14]
Chomsky N (1957) Syntactic structures. Mouton, The Hague.
[15]
Colasanti RL, Hunt R (1997) Resource dynamics and plant growth: a self-assembling model for individuals, populations and communities. Funct Ecol 11(2):133-145.
[16]
Colasanti RL, Hunt R, Askew AP (2001) A self-assembling model of resource dynamics and plant growth incorporating plant functional types. Funct Ecol 15(5):676-687.
[17]
Cosby BJ, Hornberger GM, Rastetter EB, Galloway JN, Wright RF (1986) Estimating catchment water quality response to acid deposition using mathematical models of soil ion exchange processes. Geoderma 38:77-95.
[18]
Cousens R, Mortimer M (1995) Dynamics of weed populations. Cambridge University Press, New York.
[19]
Damer B, Marcelo K, Revi F (1998) Nerve garden: a public terrarium in cyberspace. In: Heudin JC (ed) Virtual worlds. Springer-Verlag, Berlin, pp 177-185.
[20]
Dansereau P (1992) Repères pourune éthique de l'environnement avec une méditation sur la paix. In: Bélanger R, Plourde S (eds) Actualiser la morale: mélanges offerts à René Simon. Les Éditions Cerf, Paris.
[21]
Darwin C (1859) On the origin of species. John Murray, London.
[22]
Davidson RL (1969) Effect of root/leaf temperature differentials on root/shoot ratios in some pasture grasses and clover. Ann Bot 33:561-569.
[23]
Dawkins R (1986) The blind watchmaker. WW Norton, New York.
[24]
Dawkins R, Krebs JR (1979) Arms races between and within species. Proc R Soc Lond 205:489-511.
[25]
Deleuze C, Houllier F (1997) A transport model for tree ring width. Silva Fenn 31:239-250.
[26]
De Reffye Ph, Edelin C, Francon J, Jaeger M, Puech C (1988) Plant models faithful to botanical structure and development. Comput Graph 22:151-158.
[27]
Deussen O, Hanrahan P, Lintermann B, Mech R, Pharr M, Prusinkiewicz P (1998) Realistic modeling and rendering of plant ecosystems. Proc SIGGRAPH 98:275-286.
[28]
Ebner M (2003) Evolution and growth of virtual plants. In Banzhaf W, Christaller T, Dittrich P, Kim JT, Ziegler J (eds) Advances in artificial life--proceedings of the 7th European conference on artificial life (ECAL). Dortmund, Germany, pp 228-237.
[29]
Ebner M, Grigore A, Heffner A, Albert J (2002) Coevolution produces an arms race among virtual plants. In: Foster JA, Lutton E, Miller J, Ryan C, Tettamanzi AGB (eds) Proceedings of the fifth European conference on genetic programming (EuroGP 2002). Kinsale, Ireland, pp 316-325.
[30]
Edelstein-Keshet L (1988) Mathematical models in biology. Random House, New York.
[31]
Escuela G, Ochoa G, Krasnogor N (2005) Evolving L-systems to capture protein structure native conformations. LNCS 3447:73-83.
[32]
Ferber J (1995) Les systèmes multi-agents. InterEdition, Paris.
[33]
Fick A (1855) Über diffusion. Ann Phys (Leipzig) 170:59-86.
[34]
Filleur S, Walch-Liu P, Gan Y, Forde BG (2005) Nitrate and glutamate sensing by plant roots. Biochem Soc Trans 33:283-286.
[35]
Firbank LG, Watkinson AR (1985) A model of interference within plant monocultures. J Theor Biol 166:291-311.
[36]
Firn R (1994) Phototropism. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogensis in plants. Kluwer Academic Publishers, Dordrecht, pp 659-681.
[37]
FVS website, http://www.fs.fed.us/fmsc/fvs. April 2008.
[38]
FSPM07 (5th International Workshop on Functional Structural Plant Models) website, http://algorithm icbotany.org/FSPM07. April 2008.
[39]
Gause GF (1934) The struggle for existence. Williams and Wilkins, Baltimore.
[40]
Génard M, Pagès L, Kervella J (1998) A carbon balance model of peach tree growth and development for studying the pruning response. Tree Physiol 18:351-362.
[41]
Gherini SA, Mok L, Hudson JM, Davis GF, Chen CW, Goldstein RA (1985) The ILWAS model: formulation and application. Water Air Soil Pollut 26:425-460.
[42]
Godin C (2000) Representing and encoding plant architecture: a review. Ann For Sci 57:413-438.
[43]
Godin C, Carglio Y (1998) A multiscale model of plant topological structures. J Theor Biol 191:1-46.
[44]
Godin C, Sinoquet H (2005) Functional-structural plant modelling. New Phytol 166:705-708.
[45]
Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley.
[46]
Grimm V (1999) Ten years of individual-based modelling in ecology: what we have learned and what could we learn in the future? Ecol Modell 115:129-148.
[47]
Grimm V, Railsback SF (2005) Individual-based modeling and ecology. Princeton University Press, Princeton.
[48]
Grossman YL, DeJong TM (1994) PEACH: a simulation model of reproductive and vegetative growth in peach trees. Tree Physiol 14:329-345.
[49]
Hallé F (1999) Eloge de la plante. Pour une nouvelle biologie. Editions du Seuil, Paris.
[50]
Harper JL, Rosen BR, White J (1986) The growth and form of modular organisms. The Royal Society, London.
[51]
Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor.
[52]
Honda H (1971) Description of the form of trees by the parameters of the tree-like body: effects of the branching angle and the branch length on the shape of the tree-like body. J Theor Biol 31:331-338.
[53]
Hornby GS, Pollack JB (2001) Evolving L-systems to generate virtual creatures. Comput Graph 25(6):1041- 1048.
[54]
Jacob C (1994) Genetic L-system programming. In: Davudor Y, Schwefel HP, Maenner R (eds) PPSN III. The 3rd international conference on evolutionary computation. Jerusalem, Israel, Berlin, pp 334-343.
[55]
Jacob C (1996a) Evolution programs evolved. In: Voigt HM, Ebeling W, Rechenberg I, Schwefel HP (eds) PPSN IV. The 4th international conference on evolutionary computation. Berlin, Germany, Berlin, pp 42-51.
[56]
Jacob C (1996b) Evolving evolution programs: genetic programming and L-systems. In: Koza JR, Goldberg DE, Fogel DB, Riolo RL (eds) Proceedings of the 1st annual conference on genetic programming. Cambridge, MA, pp 107-115.
[57]
Katok A, Hasselblatt B (1995) Introduction to the modern theory of dynamical systems. Cambridge University Press, New York.
[58]
Kókai G, Tóth Z, Ványi R (1999) Modelling blood vessels of the eye with parametric L-systems using evolutionary algorithms. In: Proc joint European conference on artificial intelligence in medicine and medical decision making, AIMDM'99, LNCS, vol 1620, pp 433-442.
[59]
Kurth W (1994a) Morphological models of plant growth: possibilities and ecological relevance. Ecol Modell 75-76:299-308.
[60]
Kurth W (1994b) Growth grammar interpreter GROGRA 2.4. A software tool for the 3-dimensional interpretation of stochastic, sensitive growth grammars in the context of plant modelling, Introduction and reference manual. In: Berichte des Fortschungszentrums Waldökosysteme, Ser. B38, Göttingen, Germany, p 192.
[61]
Lacointe A (2000) Carbon allocation among tree organs: a review of basic processes and representation in functional-structural models. Ann For Sci 57:521-534.
[62]
Landsberg JJ, Gower ST (1997) Applications of physiological ecology to forest management. Academic Press, London.
[63]
Lane B, Prusinkiewicz P (2002) Generating spatial distributions for multilevel models of plant communities. In: Proceedings of graphics interface, pp 69-80.
[64]
Le Dizès S, Cruiziat P, Lacointe A, Sinoquet H, Le Roux X, Balandier Ph, Jacquet P (1997) A model for simulating structure-function relationships in walnut tree growth processes. Silva Fenn 31:313-328.
[65]
Le Roux X, Lacointe A, Escobar-Gutiérrez A, LeDizès S (2001) Carbon-based models of individual tree growth: a critical appraisal. Ann For Sci 58:469-506.
[66]
LIAP5 website, http://www.math-info.univ-paris5.fr/alife. April 2008.
[67]
Lindenmayer A (1968) Mathematical models for cellular interaction in development, I and II. J Theor Biol 18:280-315.
[68]
Lo E, Zhang MW, Lechowicz M, Messier C, Nikinmaa E, Perttunen J (2000) Adaptation of the LIGNUM model simulations of growth and light response in jack pine. For Ecol Manag 150:279-291.
[69]
Lotka AJ (1924) Elements of physical biology. Williams and Wilkins, Baltimore, Maryland, USA. Reprinted in 1956 by Dover Publications, New York as Elements of Mathematical Biology.
[70]
Marschner H (1995) Mineral nutrition of higher plants, Second edn. Academic Press, London.
[71]
Mech R, Prusinkiewicz P (1996) Visual models of plants interacting with their environment. In: Proceedings of SIGGRAPH'96 (New Orleans). ACM Press, New York, pp 397-410.
[72]
Mercer L, Prusinkiewicz P, Hanan J (1990) The concept and design of a Virtual Laboratory. In: Proceedings of graphics interface, pp 149-155.
[73]
Mock KJ (1998) Wildwood: the evolution of L-system plants for virtual environments. In: International conference on evolutionary computation. Anchorage, AK, pp 476-480.
[74]
Münch E (1930) Die Stoffbewegungen in der Pflanze. Gustav Fischer, Jena.
[75]
Niklas KJ (1986) Computer-simulated plant evolution. Sci Am 254:68-75.
[76]
Ochoa G (1998) On genetic algorithms and Lindenmayer systems. In: Parallel problem solving from nature--PPSN V. Berlin, pp 335-344.
[77]
OGRE website, http://www.ogre3d.org. April 2008.
[78]
ODE website, http://www.ode.org. April 2008.
[79]
Pagès L, Doussan C, Vercambre G (2000) An introduction on below-ground environment and resource acquisition, with special reference on trees. Simulation models should include plant structure and function. Ann For Sci 57:513-520.
[80]
Pearl R, Reed LJ (1920) On the rate of growth of the population of United States since 1790 and its mathematical representation. Proc Natl Acad Sci USA 6:275-288.
[81]
Peng C (2000) Growth and yield models for uneven-aged stands: past, present and future. For Ecol Manag 132:259-279.
[82]
Perttunen J, Sievänen R, Nikinmaa E, Salminen H, Saarenmaa H, Väkevä J (1996) LIGNUM: a tree model based on simple structural units. Ann Bot 77:87-98.
[83]
Perttunen J, Sievänen R, Nikinmaa E (1998) LIGNUM: a model combining the structure and functioning of trees. Ecol Modell 108:189-198.
[84]
Perttunen J, Nikinmaa E, Lechowicz MJ, Sievänen R, Messier C (2001) Application of the functional-structural tree model LIGNUM to sugar maple saplings (Acer saccharum Marsh) growing in forest gaps. Ann Bot 88:471-481.
[85]
Pigliucci M (2001) Phenotypic plasticity: beyond nature and nurture. The John Hopkins University Press, Baltimore.
[86]
Prusinkiewicz P (1998) Modeling of spatial structure and development of plants: a review. Sci Hortic 74:113-149.
[87]
Prusinkiewicz P, Hanan JS (1989) Lindenmayer systems, fractals and plants. Lecture notes in biomathematics. Springer-Verlag, New York.
[88]
Prusinkiewicz P, Lindenmayer A (1990) The algorithmic beauty of plants. Springer-Verlag, Berlin.
[89]
Prusinkiewicz P, Hammel M, Hanan J, Mech R (1997) Visual models of plant development. In: Rozenberg G, Salomaa A (eds) Handbook of formal languages, vol 3. Springer-Verlag, Berlin, pp 535-597.
[90]
Radosevich SR, Holt J, Ghersa CM (1997) Weed ecology, implications for management. Wiley, New York.
[91]
Rauscher HM, Isebrands JG, Host GE, Dickson RE, Dickmann DI, Crow TR, Michael DA (1990) ECOPHYS: an ecophysiological growth process model for juvenile poplar. Tree Physiol 7:255-281.
[92]
Ricklefs R (1990) Ecology, 3rd edn. Freeman, New York.
[93]
Room P, Hanan J, Prusinkiewicz P (1996) Virtual plants: new perspectives for ecologists, pathologists and agricultural scientists. Trends Plant Sci 1:33-38.
[94]
Schwinning S, Weiner J (1998) Mechanisms determining the degree of size-asymmetry in competition among plants. Oecologia 113:447-455.
[95]
Shinozaki K, Yoda K, Hozumi K, Kiro T (1964) A quantitative analysis of plant form--the pipe model theory, I. basic analysis. Jpn J Ecol 14:97-105.
[96]
Sievanen R, Makela A, Nikinmaa E (1997) Preface to the collection of papers on functional-structural tree models. Silva Fenn 31(3):237-238.
[97]
Sievanen R, Nikinmaa E, Nygren P, Ozier-Lafontaine H, Perttunen J, Hakula H (2000) Components of functional-structural tree models. Ann For Sci 57:399-412.
[98]
Sims K (1991) Artificial evolution for computer graphics. Comput Graph 25(4):319-328. ACM SIGGRAPH '91 conference proceedings. Las Vegas, Nevada.
[99]
Sperry JS, Adler FR, Campbell GS, Comstock JP (1998) Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant Cell Environ 21:347-360.
[100]
Stearns SC (1992) The evolution of life histories. Oxford University Press, UK.
[101]
Steinberg D, Sikora S, Lattaud C, Fournier C, Andrieu B (1999) Plant growth simulation in virtual worlds : towards online artificial ecosystems, In: Proceedings of the first workshop on artificial life integration in virtual environment. Lausanne, Switzerland.
[102]
Thornley JHM (1972a) A model to describe the partitioning of photosynthate during vegetative plant growth. Ann Bot 36:419-430.
[103]
Thornley JHM (1972b) A balanced quantitative model for root:shoot ratios in vegetative plants. Ann Bot 36:431-441.
[104]
Thornley JHM (1998) Modelling shoot:root relations: the only way forward? Ann Bot 81:165-171.
[105]
Tilman GD (1984) Plant dominance along an experimental nutrient gradient. Ecology 65:1445-1453.
[106]
Ulam S (1962) On some mathematical properties connected with patterns of growth of figures. In: Proceedings of symposia on applied mathematics, vol 14. Am. Math. Soc., pp 215-224.
[107]
Vanclay JK (1994) Modelling forest growth and yield: applications to mixed tropical forests. CAB International, UK.
[108]
Van Dyck M (2001) Keyword reference guide for the forest vegetation simulator. WO-TM Service Center, USDA Forest Service, Fort Collins.
[109]
Van Valen L (1973) A new evolutionary law. Evol Theory 1:1-30.
[110]
Verhulst PF (1838) Notice sur la loi que la population suit dans son accroissement. Corr Math Phys 10:113-121.
[111]
Volterra V (1926) Fluctuations in the abundance of a species considered mathematically. Nature 118:558-560.
[112]
Weinstein DA, Yanai RD, Beloin R, Zollweg CG (1992) The response of plants to interacting stresses: TREGRO Version 1.74--description and parameter requirements. Electric Power Res. Institute, Palo Alto.
[113]
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125-159.
[114]
Yoda K, Kira T, Ogawa H, Hozumi K (1963) Self-thinning in overcrowded pure stands under cultivated and natural conditions. J Biol 14:107-129.

Cited By

View all
  1. Competition and evolution in virtual plant communities: a new modeling approach

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Natural Computing: an international journal
    Natural Computing: an international journal  Volume 8, Issue 2
    June 2009
    226 pages

    Publisher

    Kluwer Academic Publishers

    United States

    Publication History

    Published: 01 June 2009

    Author Tags

    1. Artificial evolution
    2. Artificial life
    3. Multi-agent system
    4. Plant modeling
    5. Population dynamics

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 09 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media