skip to main content
article

Dynamic video anomaly detection and localization using sparse denoising autoencoders

Published: 01 June 2018 Publication History

Abstract

The emergence of novel techniques for automatic anomaly detection in surveillance videos has significantly reduced the burden of manual processing of large, continuous video streams. However, existing anomaly detection systems suffer from a high false-positive rate and also, are not real-time, which makes them practically redundant. Furthermore, their predefined feature selection techniques limit their application to specific cases. To overcome these shortcomings, a dynamic anomaly detection and localization system is proposed, which uses deep learning to automatically learn relevant features. In this technique, each video is represented as a group of cubic patches for identifying local and global anomalies. A unique sparse denoising autoencoder architecture is used, that significantly reduced the computation time and the number of false positives in frame-level anomaly detection by more than 2.5%. Experimental analysis on two benchmark data sets - UMN dataset and UCSD Pedestrian dataset, show that our algorithm outperforms the state-of-the-art models in terms of false positive rate, while also showing a significant reduction in computation time.

References

[1]
Adam A, Rivlin E, Shimshoni I, Reinitz D (2008) Robust real-time unusual event detection using multiple fixed-location monitors. IEEE Trans Pattern Anal Mach Intell 30(3):555---560
[2]
Aljawarneh S, Aldwairi M, Yassein MB (2017) Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model. Journal of Computational Science. Elsevier
[3]
Aljawarneh SA, Vangipuram R, Puligadda VK, Vinjamuri J (2017) G-SPAMINE: An approach to discover temporal association patterns and trends in internet of things. Future Generation Computer Systems. Elsevier
[4]
Antić B, Ommer B (2011) Video parsing for abnormality detection. In: 2011 international conference on computer vision. IEEE, pp 2415---2422
[5]
Bertini M, Del Bimbo A, Seidenari L (2012) Multi-scale and real-time non-parametric approach for anomaly detection and localization. Comput Vis Image Underst 116(3):320---329
[6]
Cheng KW, Chen YT, Fang WH (2015) Video anomaly detection and localization using hierarchical feature representation and gaussian process regression. In: The IEEE conference on computer vision and pattern recognition (CVPR)
[7]
Cong Y, Yuan J, Liu J (2011) Sparse reconstruction cost for abnormal event detection. In: 2011 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 3449---3456
[8]
Goldberger J, Gordon S, Greenspan H (2003) An efficient image similarity measure based on approximations of kl-divergence between two gaussian mixtures. In: 2003. Proceedings. Ninth IEEE international conference on computer vision. IEEE, pp 487---493
[9]
He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026---1034
[10]
Jiang F, Yuan J, Tsaftaris SA, Katsaggelos AK (2011) Anomalous video event detection using spatiotemporal context. Comput Vis Image Underst 115 (3):323---333
[11]
Joseph E, Galeano P, Lillo RE (2013) The mahalanobis distance for functional data with applications to classification. arXiv:13044786
[12]
Kim J, Grauman K (2009) Observe locally, infer globally: a space-time mrf for detecting abnormal activities with incremental upyears. In: IEEE conference on computer vision and pattern recognition, 2009. CVPR 2009. IEEE, pp 2921---2928
[13]
Kong D, Gray D, Tao H (2005) Counting pedestrians in crowds using viewpoint invariant training. In: BMVC, Citeseer
[14]
Li C, Han Z, Ye Q, Jiao J (2013) Visual abnormal behavior detection based on trajectory sparse reconstruction analysis. Neurocomputing 119:94---100. http://www.sciencedirect.com/science/article/pii/S0925231213000179, intelligent Processing Techniques for Semantic-based Image and Video Retrieval
[15]
Li N, Wu X, Xu D, Guo H, Feng W (2015) Spatio-temporal context analysis within video volumes for anomalous-event detection and localization. Neurocomputing 155:309---319
[16]
Li W, Mahadevan V, Vasconcelos N (2014) Anomaly detection and localization in crowded scenes. IEEE Trans Pattern Anal Mach Intell 36(1):18---32
[17]
Lippmann R (1987) An introduction to computing with neural nets. IEEE Assp magazine 4(2):4---22
[18]
Mahadevan V, Li W, Bhalodia V, Vasconcelos N (2010) Anomaly detection in crowded scenes. In: CVPR, vol 249, p 250
[19]
Mehran R, Oyama A, Shah M (2009) Abnormal crowd behavior detection using social force model. In: IEEE conference on computer vision and pattern recognition, 2009. CVPR 2009 . IEEE, pp 935---942
[20]
Mo X, Monga V, Bala R, Fan Z (2014) Adaptive sparse representations for video anomaly detection. IEEE Trans Circuits Syst Video Technol 24(4):631---645
[21]
Ng A (2011) Sparse autoencoder. CS294A lecture notes 72:1---19
[22]
Radhakrishna V, Aljawarneh SA, Kumar P, Janaki V (2017) A novel fuzzy similarity measure and prevalence estimation approach for similarity profiled temporal association pattern mining. Future Generation Computer Systems. Elsevier
[23]
Reddy V, Sanderson C, Lovell BC (2011) Improved anomaly detection in crowded scenes via cell-based analysis of foreground speed, size and texture. In: CVPR 2011 WORKSHOPS. IEEE, pp 55---61
[24]
Roshtkhari MJ, Levine MD (2013) Online dominant and anomalous behavior detection in videos. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2611---2618
[25]
Sabokrou M, Fathy M, Hoseini M, Klette R (2015) Real-time anomaly detection and localization in crowded scenes. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 56---62
[26]
Saligrama V, Chen Z (2012) Video anomaly detection based on local statistical aggregates. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 2112---2119
[27]
Stauffer C, Grimson WEL (2000) Learning patterns of activity using real-time tracking. IEEE Trans Pattern Anal Mach Intell 22(8):747---757
[28]
Vincent P, Larochelle H, Bengio Y, Manzagol PA (2008) Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning, ACM, New York, NY, USA, ICML '08. pp 1096---1103
[29]
Wang Z, Bovik A, Sheikh HR (2004) Image quality assessment from error measurement to structural similarity. IEEE Trans Image Process 13(4):600---612
[30]
Wu S, Moore BE, Shah M (2010) Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes. IEEE
[31]
Xu D, Song R, Wu X, Li N, Feng W, Qian H (2014) Video anomaly detection based on a hierarchical activity discovery within spatio-temporal contexts. Neurocomputing 143:144---152
[32]
Xu D, Yan Y, Ricci E, Sebe N (2017) Detecting anomalous events in videos by learning deep representations of appearance and motion. Comput Vis Image Underst 156:117---127
[33]
Zhang Y, Lu H, Zhang L, Ruan X, Sakai S (2016) Video anomaly detection based on locality sensitive hashing filters. Pattern Recogn 59:302---311.

Cited By

View all
  1. Dynamic video anomaly detection and localization using sparse denoising autoencoders

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Multimedia Tools and Applications
    Multimedia Tools and Applications  Volume 77, Issue 11
    June 2018
    1406 pages

    Publisher

    Kluwer Academic Publishers

    United States

    Publication History

    Published: 01 June 2018

    Author Tags

    1. Anomaly detection
    2. Crowded scene parsing
    3. Deep learning
    4. Real-time systems
    5. Sparse autoencoders
    6. Unsupervised learning

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 18 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media