skip to main content
article

Covering Pareto Sets by Multilevel Subdivision Techniques

Published: 01 January 2005 Publication History

Abstract

In this work, we present a new set-oriented numerical method for the numerical solution of multiobjective optimization problems. These methods are global in nature and allow to approximate the entire set of (global) Pareto points. After proving convergence of an associated abstract subdivision procedure, we use this result as a basis for the development of three different algorithms. We consider also appropriate combinations of them in order to improve the total performance. Finally, we illustrate the efficiency of these techniques via academic examples plus a real technical application, namely, the optimization of an active suspension system for cars.

References

[1]
Miettinen, K., Nonlinear Multiobjective Optimization, Kluwer Academic Publishers, Boston, Massachusetts, 1999.
[2]
Deb, K., Multiobjective Optimization Using Evolutionary Algorithms, Wiley, New York, NY, 2001.
[3]
Das, I., and Dennis, J., Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems., SIAM Journal on Optimization, Vol. 8, pp. 631-657, 1998.
[4]
Zitzler, E., Deb, K., Thiele, L., Coello Coello, C. A., and Corne, D., Evolutionary Multicriterion Optimization, 1st International Conference, EMO 2001, Springer, Berlin, Germany, 2001.
[5]
Fonseca, S. M., Fleming, P. J., Zitzler, E., Deb, K., and Thiele, L., Evolutionary Multicriterion Optimization, 2nd International Conference, EMO 2003, Springer, Berlin, Germany, 2003.
[6]
Hillermeier, C., Nonlinear Multiobjective Optimization : A Generalized Homotopy Approach, Birkhäuser, Basel, Switzerland, 2001.
[7]
Schäffler, S., Schultz, R., and Weinzierl, K., A Stochastic Method for the Solution of Unconstrained Vector Optimization Problems, Journal of Optimization Theory and Applications, Vol. 114, pp. 209-222, 2002.
[8]
Dellnitz, M., and Hohmann, A., A Subdivision Algorithm for the Computation of Unstable Manifolds and Global Attractors, Numerische Mathematik, Vol. 75, pp. 293-317, 1997.
[9]
Dellnitz, M., and Hohmann, A., The Computation of Unstable Manifolds Using Subdivision and Continuation, Nonlinear Dynamical Systems and Chaos, Edited by H. W. Broer, S. A. Van Gils, I. Hoveijn, and F. Takens, Birkhäuser, Basel, Switzerland, Vol. 19, pp. 449-459, 1996.
[10]
Dellnitz, M., Schütze, O., and Sertl, S., Finding Zeros by Multilevel Subdivision Techniques, IMA Journal of Numerical Analysis, Vol. 22, pp. 167-185, 2002.
[11]
Horst, R., and Tuy, H., Global Optimization: Deterministic Approaches. Springer, Berlin, Germany, 1993.
[12]
Pareto, V., Cours d'Economie Politique, Libraire Droz, Genève, Switzerland, 1964 (First Edition in 1896).
[13]
Kuhn, H., and Tucker, A., Nonlinear Programming, Proceedings of the Berkeley Symposium on Mathematical and Statistical Probability, Edited by J. Neumann, University of California at Berkeley, Berkeley, California, pp. 481-492, 1951.
[14]
Junge, O., Mengenorientierte Methoden zur numerischen Analyse dynamischer Systeme, PhD Thesis, University of Paderborn, 1999.
[15]
Dennis, J. E., and Schnabel, R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1983.
[16]
Schütze, O., Mostaghim, S., Dellnitz, M., and Teich, J., Covering Pareto Sets by Multilevel Evolutionary Subdivision Techniques, Evolutionary Multicriterion Optimization, Edited by C. M. Fonseca, P. J. Fleming, E. Zitzler, D. Deb, and L. Thiele, Springer, Berlin, Germany, Vol. 2, pp. 118-132, 2003.
[17]
Sertl, S., and Dellnitz, M., Global Optimization Using a Dynamical Systems Approach, Journal of Global Optimization (submitted).
[18]
Chauduri, I., Sertl, S., Zoltán, H., Dellnitz, M., and Fraunheim, T., Global Optimization of Silicon Nanoclusters, Applied Surface Science (submitted).
[19]
Schütze, O., A New Data Structure for the Nondominance Problem in Multiobjective Optimization, Evolutionary Multicriterion Optimization, Edited by C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele, Springer, Berlin, Germany, Vol. 2, pp. 509-518, 2003.
[20]
Mitschke, M., Dynamik der Kraftfahrzeuge, Volume C: Fahrverhalten, 2nd Edition, Springer, Berlin, Germany, 1990.
[21]
Castiglioni, G., Jäker, K., and Schlüter, F., Das aktive Fahrwerk mit elektrischen Aktuatoren, AT Automatisierungstechnik, Vol. 7, pp. 345-350, 1996.
[22]
Hestermeyer, T., and Oberschelp, O., Selbstoptimierende Fahrzeugregelung-Verhaltensbasierte Adaption, Intelligente mechatronische Systeme, HNI-Verlagsschriftenreihe, Heinz Nixdorf Institut, Vol. 122, pp. 231-241, 2003.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Optimization Theory and Applications
Journal of Optimization Theory and Applications  Volume 124, Issue 1
January 2005
250 pages

Publisher

Plenum Press

United States

Publication History

Published: 01 January 2005

Author Tags

  1. Multiobjective optimization
  2. Pareto sets
  3. global optimization

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media