skip to main content
article

Acceleration of Weak Galerkin Methods for the Laplacian Eigenvalue Problem

Published: 01 May 2019 Publication History

Abstract

Recently, we proposed a weak Galerkin finite element method for the Laplace eigenvalue problem. In this paper, we present two-grid and two-space skills to accelerate the weak Galerkin method. By choosing parameters properly, the two-grid and two-space weak Galerkin method not only doubles the convergence rate, but also maintains the asymptotic lower bounds property of the weak Galerkin method. Some numerical examples are provided to validate our theoretical analysis.

References

[1]
Armentano, M.G., Duran, R.G.: Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. Electron. Trans. Numer. Anal. 17, 93---101 (2004)
[2]
Babuska, I., Osborn, J.: Handbook of Numerical Analysis, Vol II, Part 1. Elsevier, North-Holland (1991)
[3]
Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1---120 (2010)
[4]
Bramble, J.H., Hubbard, B.E.: Effects of boundary regularity on the discretization error in the fixed membrane eigenvalue problem. SIAM J. Numer. Anal. 5(4), 835---863 (1968)
[5]
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15. Springer New York, New York (2008)
[6]
Chatelin, F.: Spectral approximation of linear operators. In: Spectr. Approx. Linear Oper. pp. xxvii+458. Society for Industrial and Applied Mathematics (2011)
[7]
Chen, H., Jia, S., Xie, H.: Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems. Appl. Math. 54(3), 237---250 (2009)
[8]
Chen, H., Jia, S., Xie, H.: Postprocessing and higher order convergence for the mixed finite element approximations of the eigenvalue problem. Appl. Numer. Math. 61(4), 615---629 (2011)
[9]
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, vol. 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2002)
[10]
Feng, X., Weng, Z., Xie, H.: Acceleration of two-grid stabilized mixed finite element method for the Stokes eigenvalue problem. Appl. Math. 59(6), 615---630 (2014)
[11]
Grebenkov, D.S., Nguyen, B.-T.: Geometrical structure of Laplacian eigenfunctions. SIAM Rev. 55(4), 601---667 (2013)
[12]
Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman Advanced Publishing Progr. Pitman Advanced Publishing Program, Boston (1985)
[13]
Henning, P., Målqvist, A., Peterseim, D.: Two-level discretization techniques for ground state computations of Bose---Einstein condensates. SIAM J. Numer. Anal. 52(4), 1525---1550 (2014)
[14]
Hu, J., Huang, Y., Lin, Q.: Lower bounds for eigenvalues of elliptic operators: by nonconforming finite element methods. J. Sci. Comput. 61(1), 196---221 (2014)
[15]
Hu, X., Cheng, X.: Acceleration of a two-grid method for eigenvalue problems. Math. Comput. 80(275), 1287---1301 (2011)
[16]
Larson, M.G.: A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems. SIAM J. Numer. Anal. 38(2), 608---625 (2000)
[17]
Li, Q., Wang, J.: Weak Galerkin finite element methods for parabolic equations. Numer. Methods Partial Differ. Equ. 29(6), 1---21 (2013)
[18]
Liu, X.: A framework of verified eigenvalue bounds for self-adjoint differential operators. Appl. Math. Comput. 267, 341---355 (2015)
[19]
Luo, F., Lin, Q., Xie, H.: Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods. Sci. China Math. 55(5), 1069---1082 (2012)
[20]
Marion, M., Xu, J.: Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numer. Anal. 32(4), 1170---1184 (1995)
[21]
Mu, L., Wang, J., Ye, X.: A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods. J. Comput. Phys. 273, 327---342 (2014)
[22]
Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes. Numer. Methods Partial Differ. Equ. 30(3), 1003---1029 (2014)
[23]
Mu, L., Wang, J., Ye, X., Zhang, S.: A C0-weak Galerkin finite element method for the biharmonic equation. J. Sci. Comput. 59(2), 473---495 (2014)
[24]
Mu, L., Wang, J., Ye, X., Zhang, S.: A weak Galerkin finite element method for the Maxwell equations. J. Sci. Comput. 65(1), 363---386 (2015)
[25]
Racheva, M.R., Andreev, A.B.: Superconvergence postprocessing for eigenvalues. Comput. Methods Appl. Math. 2(2), 171---185 (2002)
[26]
Sun, J., Zhou, A.: Finite Element Methods for Eigenvalue Problems. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2017)
[27]
Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241(1), 103---115 (2013)
[28]
Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comput. 83(289), 2101---2126 (2014)
[29]
Weinberger, H.F.: Lower bounds for higher eigenvalues by finite difference methods. Pac. J. Math. 8(2), 339---368 (1958)
[30]
Xie, H., Yin, X.: Acceleration of stabilized finite element discretizations for the Stokes eigenvalue problem. Adv. Comput. Math. 41(4), 799---812 (2015)
[31]
Xu, J.: A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15(1), 231---237 (1994)
[32]
Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33(5), 1759---1777 (1996)
[33]
Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Math. Comput. 70(233), 17---26 (1999)
[34]
Xu, J., Zhou, A.: Local and parallel finite element algorithms based on two-grid discretizations. Math. Comput. 69(231), 881---909 (2000)
[35]
Yang, Y., Bi, H.: Two-grid finite element discretization schemes based on shifted-inverse power method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 49(4), 1602---1624 (2011)
[36]
Q. Zhai, H. Xie, R. Zhang, Z. Zhang. The weak Galerkin method for elliptic eigenvalue problems. Commun. Comput. Phys. Accepted. arXiv:1508.05304
[37]
Zhang, R., Zhai, Q.: A weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order. J. Sci. Comput. 64(2), 559---585 (2015)
[38]
Zhou, J., Hu, X., Zhong, L., Shu, S., Chen, L.: Two-Grid methods for Maxwell eigenvalue problems. SIAM J. Numer. Anal. 52(4), 2027---2047 (2014)

Cited By

View all
  1. Acceleration of Weak Galerkin Methods for the Laplacian Eigenvalue Problem

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Journal of Scientific Computing
        Journal of Scientific Computing  Volume 79, Issue 2
        May 2019
        689 pages

        Publisher

        Plenum Press

        United States

        Publication History

        Published: 01 May 2019

        Author Tags

        1. 35B45
        2. 35J35
        3. 35J50
        4. 65N12
        5. 65N15
        6. 65N30
        7. 74N20
        8. Eigenvalue problem
        9. Lower bound
        10. Primary
        11. Secondary
        12. Two-grid method
        13. Two-space method
        14. Weak Galerkin finite element method

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 08 Feb 2025

        Other Metrics

        Citations

        Cited By

        View all

        View Options

        View options

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media