skip to main content
article

Expected computations on color spanning sets

Published: 01 April 2015 Publication History

Abstract

Given a set of $$n$$ n points, each is painted by one of the $$k$$ k given colors, we want to choose $$k$$ k points with distinct colors to form a color spanning set. For each color spanning set, we can construct the convex hull and the smallest axis-aligned enclosing rectangle, etc. Assuming that each point is chosen independently and identically from the subset of points of the same color, we propose an $$O(n^2)$$ O ( n 2 ) time algorithm to compute the expected area of convex hulls of the color spanning sets and an $$O(n^2)$$ O ( n 2 ) time algorithm to compute the expected perimeter of convex hulls of the color spanning sets. For the expected perimeter (resp. area) of the smallest perimeter (resp. area) axis-aligned enclosing rectangles of the color spanning sets, we present an $$O(n\log n)$$ O ( n log n ) (resp. $$O(n^2)$$ O ( n 2 ) ) time algorithm. We also propose a simple approximation algorithm to compute the expected diameter of the color spanning sets. For the expected distance of the closest pair, we show that it is $$\#$$ # P-complete to compute and there exists no polynomial time $$2^{n^{1-\varepsilon }}$$ 2 n 1 - approximation algorithm to compute the probability that the closest pair distance of all color spanning sets equals to a given value $$d$$ d unless $$P=NP$$ P = N P , even in one dimension and when each color paints two points.

References

[1]
Abellanas M, Hurtado F, Icking C, Klein R, Langetepe E, Ma L, Palop B, Sacristan V (2001a) Smallest color-spanning objects. In: Proceedings of 9th European symposium on algorithms, pp 278-289.
[2]
Abellanas M, Hurtado F, Icking C, Klein R, Langetepe E, Ma L, Palop B, Sacristan V (2001b) The farthest color Voronoi diagram and related problems. In: Proceedings of the 17th European workshop on computational geometry (EWCG'01), pp 113-116.
[3]
Afshani P, Agarwal PK, Arge L, Larsen KG, Phillips JM (2011) (Approximate) uncertain skylines. In: Proceedings of the 14th international conference on database theory, pp 186-196.
[4]
Aggarwal A, Edelsbrunner H, Raghavan P, Tiwari P (1992) Optimal time bounds for some proximity problems in the plane. Inf Process Lett 42:55-60.
[5]
Agarwal PK, Efrat A, Sankararaman S, Zhang W (2012a) Nearest-neighbor searching under uncertainty. In: Proceedings of the 31st symposium on principles of database systems, pp 225-236.
[6]
Agarwal PK, Cheng SW, Yi K (2012b) Range searching on uncertain data.ACMTrans Algorithms 8(4):1-17.
[7]
Beresford AR, Stajano F (2003) Location privacy in pervasive computing. IEEE Pervasive Comput 2(1): 46-55.
[8]
Cheema MA, Lin X, Wang W, Zhang W, Pei J (2010) Probabilistic reverse nearest neighbor queries on uncertain data. IEEE Trans Knowl Data Eng 22(4):550-564.
[9]
Cheng R, Kalashnikov DV, Prabhakar S (2004) Querying imprecise data in moving object environments, knowledge and data engineering. IEEE Trans Knowl Data Eng 16(9):1112-1127.
[10]
Cheng R, Zhang Y, Bertino E, Prabhakar S (2006) Preserving user location privacy in mobile data management infrastructures. In: Proceedings of the 6th internaational workshop on privacy enhancing technologies (PET'06). LNCS, vol 4258, pp 393-412.
[11]
Cormode G, Garofalakis M (2010) Histograms and wavelets on probabilistic data. IEEE Trans Knowl Data Eng 22(8):1142-1157.
[12]
Cormode G, McGregor A (2008) Approximation algorithms for clustering uncertain data. In: Proceedings of the twenty-seventh ACMSIGMOD-SIGACT-SIGART symposium on principles of database systems, pp 191-200.
[13]
Dalvi N, Suciu D (2007) Efficient query evaluation on probabilistic databases. VLDB J 16(4):523-544.
[14]
Das S, Goswani PP, Nandy SC (2009) Smallest color-spanning object revised. Int J Comput Geom Appl 19(5):457-478.
[15]
Fan C, Luo J, Zhong F (2013) On some proximity problems of colored sets. In: Proceedings of the 7th international conference on combinatorial optimization and applications, pp 202-213.
[16]
Fleischer R, Xu X (2010) Computing minimum diameter color-spanning sets. In: Proceedings of the 4th international workshop on frontiers in algorithmics (FAW'10). LNCS, vol 6213, pp 285-292.
[17]
Gedik B, Liu L (2005) A customizable k-anonymity model for protecting location privacy. In: Proceedings of the 25th international conference on distributed computing systems (ICDCS'05), pp 620-629.
[18]
Jørgensen A, Löffler M, Phillips J (2011) Geometric computations on indecisive points. In: Proceedings of the 12th international symposium on algorithms and data structures, pp 536-547.
[19]
Ju W, Fan C, Luo J, Zhu B, Daescu O (2013a) On some geometric problems of color-spanning sets. J Comb Optim 26(2):266-283.
[20]
Ju W, Luo J, Zhu B, Daescu O (2013b) Largest area convex hull of imprecise data based on axis-aligned squares. J Comb Optim 26(4):832-859.
[21]
Kamousi P, Chan TM, Suri S (2011a) Closest pair and the post office problem for stochastic points. In: Proceedings of the 12th international symposium on algorithms and data structures, pp 548-559.
[22]
Kamousi P, Chan TM, Suri S (2011b) Stochastic minimum spanning trees in euclidean spaces. In: Proceedings of the 27th ACM symposium on computational geometry, pp 65-74.
[23]
Löffler M, van Kreveld M (2006) Largest and smallest tours and convex hulls for imprecise points. In: Proceedings of the 10th Scandinavian workshop on algorithm theory, pp 375-387.
[24]
Pei J, Jiang B, Lin X, Yuan Y (2007) Probabilistic skylines on uncertain data. VLDB 2007:15-26.
[25]
Pfoser D, Jensen C (1999) Capturing the uncertainty of moving-objects representations. In: Proceedings of the 6th international symposium on advances in spatial databases (SSD'99). LNCS, vol 1651, pp 111-131.
[26]
Roth D (1996) On the hardness of approximate reasoning. Artif Intell 82(1-2):273-302.
[27]
Sistla PA, Wolfson O, Chamberlain S, Dao S (1997) Querying the uncertain position of moving objects. Temporal databases: research and practice, vol 1399., LNCS, Springer, Berlin, pp 310-337.
[28]
Suri S, Verbeek K, Yildiz H (2013) On the most likely convex hull of uncertain points. In: Proceedings of ESA'2013. LNCS, vol 8125, pp 791-802.
[29]
Tao Y, Cheng R, Xiao X, NgaiW-K, Kao B, Prabhakar S (2005) Indexing multi-dimensional uncertain data with arbitrary probability density functions. In: Proceedings of the 31st international conference on very large data bases. pp 922-933.
[30]
Vadhan S (1997) The complexity of counting in sparse, regular, and planar graphs. SIAM J Comput 31(2):398-427.
[31]
Yuen SM, Tao Y, Xiao X, Pei J, Zhang D (2010) Superseding nearest neighbor search on uncertain spatial databases. IEEE Trans Knowl Data Eng 22(7):1041-1055.
[32]
Zhang D, Chee YM, Mondal A, Tung AKH, Kitsuregawa M (2009) Keyword search in spatial databases: towards searching by document. In: Proceedings of the 25th IEEE international conference on data engineering (ICDE'09), pp 688-699.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Combinatorial Optimization
Journal of Combinatorial Optimization  Volume 29, Issue 3
April 2015
174 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 April 2015

Author Tags

  1. Computational geometry
  2. Expected value
  3. Imprecise data

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media