skip to main content
article

Nested dissection solver for transport in 3D nano-electronic devices

Published: 01 June 2016 Publication History

Abstract

The hierarchical Schur complement method (HSC) and the HSC-extension have significantly accelerated the evaluation of the retarded Green's function, particularly the lesser Green's function, for two-dimensional nanoscale devices. In this work, the HSC-extension is applied to determine the solution of non-equilibrium Green's functions on three-dimensional nanoscale devices. The operation count for the HSC-extension is analyzed for a cuboid device. When a cubic device is discretized with $$N \times N \times N$$N N N grid points, the state-of-the-art recursive Green function (RGF) algorithm takes $$\mathscr {O}(N^7)$$O(N7) operations, whereas the HSC-extension only requires $$\mathscr {O}(N^6)$$O(N6) operations. Operation counts and runtimes are also studied for three-dimensional nanoscale devices of practical interest: a graphene-boron nitride-graphene multilayer system, a silicon nanowire, and a DNA molecule. The numerical experiments indicate that the cost for the HSC-extension is proportional to the solution of one linear system (or one LU-factorization) and that the runtime speed-ups over RGF exceed three orders of magnitude when simulating realistic devices, such as a graphene-boron nitride-graphene multilayer system with 40,000 atoms.

References

[1]
Datta, S.: The non-equilibrium Green's function (NEGF) formalism: An elementary introduction. In: Electron Devices Meeting, 2002. IEDM'02. International (IEEE, 2002), pp. 703---706
[2]
Ren, Z., Venugopal, R., Goasguen, S., Datta, S., Lundstrom, M.S.: nanoMOS 2.5: a two-dimensional simulator for quantum transport in double-gate MOSFETs. IEEE Trans. Electron Devices. 50(9), 1914 (2003)
[3]
Barker, J.R., Pepin, J., Finch, M., Laughton, M.: Theory of non-linear transport in quantum waveguides. Solid State Electron. 32(12), 1155 (1989)
[4]
Luisier, M., Schenk, A., Fichtner, W.: Quantum transport in two-and three-dimensional nanoscale transistors: coupled mode effects in the nonequilibrium Green's function formalism. J. Appl. Phys. 100(4), 043713 (2006)
[5]
Asenov, A., Brown, A.R., Davies, J.H., Kaya, S., Slavcheva, G.: Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs. IEEE Trans. Electron Devices. 50(9), 1837 (2003)
[6]
Martinez, A., Kalna, K., Barker, J.R., Asenov, A.: A study of the interface roughness effect in Si nanowires using a full 3D NEGF approach. Physica E 37(1), 168 (2007)
[7]
Martinez, A., Barker, J.R., Asenov, A., Bescond, M., Svizhenko, A., Anantram, A.: Development of a full 3D NEGF nano-CMOS simulator. In: Simulation of Semiconductor Processes and Devices, 2006 International Conference on (IEEE, 2006), pp. 353---356
[8]
Martinez, A., Bescond, M., Barker, J.R., Svizhenko, A., Anantram, M.P., Millar, C., Asenov, A.: A self-consistent full 3-D real-space NEGF simulator for studying nonperturbative effects in nano-MOSFETs. IEEE Trans. Electron. Devices. 54(9), 2213 (2007)
[9]
Martinez, A., Brown, A.R., Asenov, A., Seoane, N.: A comparison between a fully-3D real-space versus coupled mode-space NEGF in the study of variability in gate-all-around Si nanowire MOSFET. In: Simulation of Semiconductor Processes and Devices, 2009. SISPAD'09. International Conference on (IEEE, 2009), pp. 1---4
[10]
Martinez, A., Seoane, N., Brown, A.R., Asenov, A.: A detailed 3D-NEGF simulation study of tunnelling in n-Si nanowire MOSFETs. In: Silicon Nanoelectronics Workshop (SNW), 2010 (IEEE, 2010), pp. 1---2
[11]
Anantram, M., Lundstrom, M., Nikonov, D.: Modeling of nanoscale devices. Proc. IEEE 96(9), 1511 (2008)
[12]
Svizhenko, A., Anantram, M., Govindam, T., Biegel, B., Venugopal, R.: Two-dimensional quantum mechanical modeling of nanotransistors. J. Appl. Phys. 91, 2343 (2002)
[13]
Lin, L., Lu, J., Ying, L., Car, R., E, W.: Fast algorithm for extracting the diagonal of the inverse matrix with application to the electronic structure analysis of metallic systems. Commun. Math. Sci. 7(3), 755 (2009)
[14]
Lin, L., Yang, C., Meza, J., Lu, J., Ying, L., E, W.: SelInv - An algorithm for selected inversion of a sparse symmetric matrix. ACM Trans. Math. Softw. 37, 40 (2011)
[15]
Li, S., Ahmed, S., Klimeck, G., Darve, E.: Computing entries of the inverse of a sparse matrix using the FIND algorithm. J. Comp. Phys. 227, 9408 (2008)
[16]
Li, S., Darve, E.: Extension and optimization of the FIND algorithm: computing Green's and less-than Green's functions. J. Comp. Phys. 231(4), 1121 (2012).
[17]
Hetmaniuk, U., Zhao, Y., Anantram, M.P.: A nested dissection approach to modeling transport in nanodevices: algorithms and applications. Int. J. Numer. Methods. Eng. 95(7), 587 (2013)
[18]
Takahashi, K., Fagan, J., Chin, M.S.: Formation of a sparse bus impedance matrix and its application to short circuit study. In: Eighth PICA Conference (1973)
[19]
Erisman, A.M., Tinney, W.F.: On computing certain elements of the inverse of a sparse matrix. Commun. ACM 18(3), 177 (1975)
[20]
George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10(2), 345 (1973)
[21]
Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359 (1998)
[22]
Nissen, A., Kreiss, G.: An optimized perfectly matched layer for the Schrödinger equation. Commun. Comput. Phys. 9, 147 (2011)
[23]
The MathWorks Inc.: MATLAB Release 2011b. Natick, Massachusetts, United States (2011)
[24]
Davis, T.: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia (2006)
[25]
Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)
[26]
Britnell, L., Gorbachev, R.V., Geim, A.K., Ponomarenko, L.A., Mishchenko, A., Greenaway, M.T., Fromhold, T.M., Novoselov, K.S., Eaves, L.: Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1794 (2013)
[27]
Zhao, Y., Wan, Z., Xu, X., Patil, S.R., Hetmaniuk, U., Anantram, M.P.: Negative Differential Resistance in Boron Nitride Graphene Heterostructures: Physical Mechanisms and Size Scaling Analysis. Scientific reports 5, (2015)
[28]
Cui, Y., Lieber, C.M.: Functional nanoscale electronic devices assembled using Silicon nanowire building blocks. Science 291(5505), 851 (2001)
[29]
Luisier, M., Schenk, A., Fichtner, W., Klimeck, G.: Atomistic simulation of nanowires in the $$sp^3d^5s^*$$sp3d5s¿ tight-binding formalism: from boundary conditions to strain calculations. Phys. Rev. B 74(20), 205323 (2006)
[30]
Göhler, B., Hamelbeck, V., Markus, T.Z., Kettner, M., Hanne, G.F., Vager, Z., Naaman, R., Zacharias, H.: Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331(6019), 894 (2011)
[31]
Postma, H.W.C.: Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett. 10(2), 420 (2010)
[32]
Tsutsui, M., Matsubara, K., Ohshiro, T., Furuhashi, M., Taniguchi, M., Kawai, T.: Electrical detection of single methylcytosines in a DNA oligomer. J. Am. Chem. Soc. 133(23), 9124 (2011)
[33]
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09 Revision A.1. Gaussian Inc. Wallingford CT (2009)
[34]
Qi, J., Edirisinghe, N., Rabbani, M.G., Anantram, M.P.: Unified model for conductance through DNA with the Landauer-Büttiker formalism. Phys. Rev. B 87(8), 085404 (2013)

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Computational Electronics
Journal of Computational Electronics  Volume 15, Issue 2
June 2016
374 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 June 2016

Author Tags

  1. 3D device modeling
  2. Green's functions
  3. Nanodevice
  4. Numerical simulation

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media