skip to main content
article

Signer independent isolated Italian sign recognition based on hidden Markov models

Published: 01 May 2015 Publication History

Abstract

Sign languages represent the most natural way to communicate for deaf and hard of hearing. However, there are often barriers between people using this kind of languages and hearing people, typically oriented to express themselves by means of oral languages. To facilitate the social inclusiveness in everyday life for deaf minorities, technology can play an important role. Indeed many attempts have been recently made by the scientific community to develop automatic translation tools. Unfortunately, not many solutions are actually available for the Italian Sign Language (Lingua Italiana dei Segni--LIS) case study, specially for what concerns the recognition task. In this paper, the authors want to face such a lack, in particular addressing the signer-independent case study, i.e., when the signers in the testing set are to included in the training set. From this perspective, the proposed algorithm represents the first real attempt in the LIS case. The automatic recognizer is based on Hidden Markov Models (HMMs) and video features have been extracted using the OpenCV open source library. The effectiveness of the HMM system is validated by a comparative evaluation with Support Vector Machine approach. The video material used to train the recognizer and testing its performance consists in a database that the authors have deliberately created by involving 10 signers and 147 isolated-sign videos for each signer. The database is publicly available. Computer simulations have shown the effectiveness of the adopted methodology, with recognition accuracies comparable to those obtained by the automatic tools developed for other sign languages.

References

[1]
von Agris, U, Kraiss, KF (2007) Towards a video corpus for signer-independent continuous sign language recognition. In: Proceedings of the International Workshop on Gesture in Human---Computer Interaction and Simulation, Lisbon
[2]
von Agris U, Zieren J, Canzler U, Bauer B, Kraiss KF (2008) Recent developments in visual sign language recognition. Univers Access Inf Soc 6(4):323---362
[3]
Al-Ahdal M, Tahir N (2012) Review in sign language recognition systems. In: Proceedings of IEEE Symposium on Computers Informatics, pp 52---57
[4]
Bertoldi N, Tiotto G, Prinetto P, Piccolo E, Nunnari F, Lombardo V, Mazzei A, Damiano R, Lesmo L, Del Principe A (2010) On the creation and the annotation of a large-scale Italian-LIS parallel corpus. In: Proceedings of the International Conference on Language Resources and Evaluation, pp 19---22
[5]
Bishop C (2006) Pattern recognition and machine learning. Springer Science+Business Media, LLC, New York
[6]
Bradski G (2000) The OpenCV library. Dr Dobb's J Softw Tools 25(11):120 (122---125)
[7]
Bradski G, Kaehler A (2008) Learning OpenCV: computer vision with the OpenCV library. O'Reilly Media Inc., Sebastopol
[8]
Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679---698
[9]
Chang CC, Lin CJ (2011) LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol 2:1---27
[10]
Cortes C, Vapnik V (1995) Support-vector networks. In: Machine Learning, pp 273---297
[11]
Dreuw P, Forster J, Deselaers T, Ney H (2008) Efficient approximations to model-based joint tracking and recognition of continuous sign language. In: Proceedings of the IEEE International Conference on Automatic Face Gesture Recognition, Los Alamitos, pp 1---6
[12]
Dreuw P, Neidle C, Sclaroff VAS, Ney H (2008) Proc Int Conf Lang Resour Eval., Benchmark databases for video-based automatic sign language recognitionEuropean Language Resources Association, Marrakech
[13]
Dreuw P, Ney H (2008) Visual modeling and feature adaptation in sign language recognition. In: ITG Conference on Voice Communication (SprachKommunikation), pp 1---4
[14]
Dreuw P, Ney H, Martinez G, Crasborn O, Piater J, Moya JM, Wheatley M (2010) The signspeak project--bridging the gap between signers and speakers. In: Proceedings of the International Conference on Language Resources and Evaluation. Valletta, Malta
[15]
Dreuw P, Rybach D, Deselaers T, Zahedi M, Ney H (2007) Speech recognition techniques for a sign language recognition system. In: Proceedings of Interspeech, pp 2513---2516
[16]
Fagiani M, Principi E, Squartini S, Piazza F (2012) A new Italian sign language database. In: Zhang H, Hussain A, Liu D, Wang Z (eds) Advances in brain inspired cognitive systems, Lecture Notes in Computer Science, vol 7366. Springer, pp 164---173
[17]
Fagiani M, Principi E, Squartini S, Piazza F (2013) A new system for automatic recognition of italian sign language. In: Apolloni B, Bassis S, Esposito A, Morabito FC (eds) Neural nets and surroundings, smart innovation, systems and technologies, vol 19. Springer, Berlin, pp 69---79
[18]
Fang G, Gao W, Ma J (2001) Signer-independent sign language recognition based on SOFM/HMM. In: Proceedings of the IEEE ICCV workshop on recognition, analysis, and tracking of faces and gestures in real-time systems, pp 90---95
[19]
Gonzalez RC, Woods RE (2007) Digital image processing, 3rd edn. Prentice Hall, USA
[20]
Gweth Y, Plahl C, Ney H (2012) Enhanced continuous sign language recognition using PCA and neural network features. In: Proceedings of the computer vision and pattern recognition workshops, pp 55---60
[21]
Haasdonk B, Bahlmann C (2004) Pattern recognition. In: Rasmussen C, Bülthoff HH, Schölkopf B, Giese MA (eds) Learning with distance substitution kernels., Lecture notes in computer scienceSpringer, Berlin, pp 220---227
[22]
Hanke T (2004) HamNoSys-representing sign language data in language resources and language processing contexts. In: Proceedings of LREC, pp 1---6
[23]
Hu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 8(2):179---187
[24]
Infantino I, Rizzo R, Gaglio S (2007) A framework for sign language sentence recognition by commonsense context. IEEE Trans Syst Man Cybern C Appl Rev 37(5):1034---1039
[25]
Kelly D, McDonald J, Markham C (2010) A person independent system for recognition of hand postures used in sign language. Pattern Recognit Lett 31(11):1359---1368
[26]
Kukharev G, Nowosielski A (2004) Visitor identification--elaborating real time face recognition system. In: Proceedings of the international conference on computer graphics, visualization and computer vision. UNION Agency, Plzen, pp 157---164
[27]
Maebatake M, Suzuki I, Nishida M, Horiuchi Y, Kuroiwa S (2008) Sign language recognition based on position and movement using multi-stream HMM. In: Proceedings of the international symposium on universal communication. Los Alamitos, pp 478---481
[28]
Quan Y (2010) Chinese sign language recognition based on video sequence appearance modeling. In: Proceedings of the IEEE Conference on Industrial Electronics and Applications, pp 1537---1542
[29]
Rabiner L, Juang BH (1993) Fundamentals of speech recognition. Prentice-Hall Inc., Upper Saddle River
[30]
Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77(62):257---286
[31]
Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press, Cambridge
[32]
Sandler W, Lillo-Martin D (2006) Sign language and linguistic universals. Cambridge University Press, Cambridge
[33]
Saon G, Chien JT (2012) Large-vocabulary continuous speech recognition systems: a look at some recent advances. IEEE Signal Process Mag 29(6):18---33
[34]
Serra J (1983) Image analysis and mathematical morphology. Academic Press Inc., Orlando
[35]
Starner T, Pentland A (1995) Real-time American sign language recognition from video using hidden Markov models. In: Proceedings of the international symposium on computer vision, pp 265---270
[36]
Starner T, Weaver J, Pentland A (1998) Real-time American sign language recognition using desk and wearable computer based video. IEEE Trans Pattern Anal Mach Intell 20(12):1371---1375
[37]
Theodorakis S, Katsamanis A, Maragos P (2009) Product-HMMs for automatic sign language recognition. In: Proceedings of the international conference on acoustics, speech and signal processing. Taipei, Taiwan, pp. 1601---1604
[38]
Theodoridis S, Koutroumbas K (2008) Pattern recognition, 4th edn. Academic Press, Burlington
[39]
Vezhnevets V, Sazonov V, Andreeva A (2003) A survey on pixel-based skin color detection techniques. In: Proceedings of GraphiCon, pp 85---92
[40]
Young SJ, Evermann G, Gales MJF, Hain T, Kershaw D, Moore G, Odell J, Ollason D, Povey D, Valtchev V, Woodland PC (2006) The HTK Book, version 3.4. Cambridge University Press, Cambridge
[41]
Zahedi M, Keysers D, Deselaers T, Ney H (2005) Pattern recognition. In: Kropatsch W, Sablatnig R, Hanbury A (eds) Combination of tangent distance and an image distortion model for appearance-based sign language recognition., Lecture Notes in Computer ScienceSpringer, Berlin, pp 401---408
[42]
Zaki MM, Shaheen SI (2011) Sign language recognition using a combination of new vision based features. Pattern Recognit. Lett. 32(4):572---577

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Pattern Analysis & Applications
Pattern Analysis & Applications  Volume 18, Issue 2
May 2015
242 pages
ISSN:1433-7541
EISSN:1433-755X
Issue’s Table of Contents

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 May 2015

Author Tags

  1. Automatic sign recognition
  2. Hidden Markov models
  3. Italian sign language (LIS)
  4. Video feature extraction

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 31 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media