skip to main content
article

A comprehensive evaluation of scholarly paper recommendation using potential citation papers

Published: 01 June 2015 Publication History

Abstract

To help generate relevant suggestions for researchers, recommendation systems have started to leverage the latent interests in the publication profiles of the researchers themselves. While using such a publication citation network has been shown to enhance performance, the network is often sparse, making recommendation difficult. To alleviate this sparsity, in our former work, we identified "potential citation papers" through the use of collaborative filtering. Also, as different logical sections of a paper have different significance, as a secondary contribution, we investigated which sections of papers can be leveraged to represent papers effectively. While this initial approach works well for researchers vested in a single discipline, it generates poor predictions for scientists who work on several different topics in the discipline (hereafter, "intra-disciplinary"). We thus extend our previous work in this paper by proposing an adaptive neighbor selection method to overcome this problem in our imputation-based collaborative filtering framework. On a publicly-available scholarly paper recommendation dataset, we show that recommendation accuracy significantly outperforms state-of-the-art recommendation baselines as measured by nDCG and MRR, when using our adaptive neighbor selection method. While recommendation performance is enhanced for all researchers, improvements are more marked for intra-disciplinary researchers, showing that our method does address the targeted audience.

References

[1]
Algarni, A., Li, Y., Xu, Y.: Selected new training documents to update user profile. In: Proceedings of the 19th International Conference on Information and Knowledge Management (CIKM'10), pp. 799---808 (2010)
[2]
Bethard, S., Jurafsky, D.: Who should I cite? Learning literature search models from citation behavior. In: Proceedings of the 19th International Conference on Information and Knowledge Management (CIKM'10), pp. 609---618 (2010)
[3]
Caragea, C., Silvescu, A., Mitra, P., Giles, C.L.: Can't see the forest for the trees? A citation recommendation system. In: Proceedings of the 10th ACM/IEEE Joint Conference on Digital Libraries (JCDL '13), pp. 111---114 (2013)
[4]
El-Arini, K., Guestrin, C.: Beyond keyword search: discovering relevant scientific literature. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'11), pp. 439---447 (2011)
[5]
Gori, M., Pucci, A.: Research paper recommender systems: a random-walk based approach. In: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006), pp. 778---781 (2006)
[6]
He, Q., Kifer, D., Pei, J., Mitra, P., Giles, C.L.: Citation recommendation without author supervision. In: Proceedings of the 4th International Conference on Web Search and Data Mining (WSDM'11), pp. 15---24 (2011)
[7]
He, Q., Pei, J., Kifer, D., Mitra, P., Giles, C.L.: Context-aware citation recommendation. In: Proceedings of the 19th International World Wide Web Conference (WWW2010), pp. 421---430 (2010)
[8]
Herlocker, J., Konstan, J., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '99), pp. 230---237 (1999)
[9]
Huang, W., Kataria, S., Karagea, C., Mitra, P., Giles, C.L., Rokach, L.: Recommending citations: translating papers into references. In: Proceedings of the 21st International Conference on Information and Knowledge Management (CIKM'12), pp. 1910---1914 (2012)
[10]
Järvelin, K., Kekäläinen, J.: IR evaluation methods for retrieving highly relevant documents. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2000), pp. 41---48 (2000)
[11]
Jarvis, R.A., Patrick, E.A.: Clustering using a similarity measure based on shared near neighbors. IEEE Trans. Comput. C22(11), 1025---1034 (1973)
[12]
Kaptein, R., Serdyukov, P., Kamps, J.: Linking wikipedia to the web. In: Proceedings of the 33rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'10), pp. 839---840 (2010)
[13]
Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39---43 (1953)
[14]
Lu, Y., He, J., Shan, D., Yan, H.: Recommending citations with translation model. In: Proceedings of the 20th International Conference on Information and Knowledge Management (CIKM'11), pp. 2017---2020 (2011)
[15]
McNee, S.M., Albert, I., Cosley, D., P. Gopalkrishnan, S.L., Rashid, A.M., Konstan, J.S., Riedl, J.: On the recommending of citations for research papers. In: Proceedings of the 2002 ACM Conference on Computer Supported Cooperative Work (CSCW '02), pp. 116---125 (2002)
[16]
Mei, Q., Zhai, C.: Generating impact-based summaries for scientific literature. In: Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics : Human Language Technologies (ACL-08: HLT), pp. 816---824 (2008)
[17]
Milne, D., Witten, I.H.: Learning to link Wikipedia. In: Proceedings of the 17th International Conference on Information and Knowledge Management (CIKM'08), pp. 509---518 (2008)
[18]
Nascimento, C., Laender, A.H.F., da Silva, A.S., Gonçalves, M.A.: A source independent framework for research paper recommendation. In: Proceedings of the 11th ACM/IEEE Joint Conference on Digital Libraries (JCDL 2011), pp. 297---306 (2011)
[19]
Nomoto, T.: Two-tier similarity model for story link detection. In: Proceedings of the 19th International Conference on Information and Knowledge Management (CIKM'10), pp. 789---798 (2010)
[20]
Oh, S., Lei, Z., Lee, W.C., Mitra, P., Yen, J.: CV-PCR: a context-guided value-driven framework for patent citation recommendation. In: Proceedings of the 22nd International Conference on Information and Knowledge Management (CIKM'13), pp. 2291---2296 (2013)
[21]
Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. In: Technical Report, SIDL-WP-1999-0120, Stanford Digital Library Technologies Project (1998)
[22]
Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130---137 (1980)
[23]
Qazvinian, V., Radev, D.R.: Scientific paper summarization using citation summary networks. In: Proceedings of the 22nd International Conference on Computational Linguistics (Coling'08), pp. 689---696 (2008)
[24]
Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, London (1983)
[25]
Sugiyama, K., Kan, M.Y.: Scholarly paper recommendation via user's recent research interests. In: Proceedings of the 10th ACM/IEEE Joint Conference on Digital Libraries (JCDL '10), pp. 29---38 (2010)
[26]
Sugiyama, K., Kan, M.Y.: Serendipitous recommendation for scholarly papers considering relations among researchers. In: Proceedings of the 11th ACM/IEEE Joint Conference on Digital Libraries (JCDL '11), pp. 307---310 (2011)
[27]
Sugiyama, K., Kan, M.Y.: Exploiting potential citation papers in scholarly paper recommendation. In: Proceedings of the 10th ACM/IEEE Joint Conference on Digital Libraries (JCDL '13), pp. 153---162 (2013)
[28]
Strohman, T., Croft, W. B., Jensen, D.: Recommending citations for academic papers. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2007), pp. 705---706 (2007)
[29]
Torres, R., McNee, S.M., Abel, M., Konstan, J.A., Riedl, J.: Enhancing digital libraries with TechLens. In: Proceedings of the 4th ACM/IEEE Joint Conference on Digital Libraries (JCDL 2004), pp. 228---236 (2004)
[30]
Voorhees, E.M.: The TREC-8 question answering track report. In: Proceedings of the 8th Text REtrieval Conference (TREC-8), pp. 77---82 (1999)
[31]
Wang, C., Blei, D.M.: Collaborative topic modeling for recommending scientific articles. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'11), pp. 448---456 (2011)
[32]
West, R., Precup, D., Pineau, J.: Completing Wikipedia's hyperlink structure through dimensionality reduction. In: Proceedings of the 18th International Conference on Information and Knowledge Management (CIKM'09), pp. 1097---1106 (2009)
[33]
West, R., Precup, D., Pineau, J.: Automatically suggesting topics for augmenting text documents. In: Proceedings of the 19th International Conference on Information and Knowledge Management (CIKM'10), pp. 929---938 (2010)
[34]
Yang, D., Wei, B., Wu, J., Zhang, Y., Zhang, L.: CARES: A ranking-oriented CADAL recommender system. In: Proceedings of the 9th ACM/IEEE Joint Conference on Digital Libraries (JCDL 2009), pp. 203---211 (2009)

Cited By

View all
  1. A comprehensive evaluation of scholarly paper recommendation using potential citation papers

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image International Journal on Digital Libraries
    International Journal on Digital Libraries  Volume 16, Issue 2
    June 2015
    88 pages
    ISSN:1432-5012
    EISSN:1432-1300
    Issue’s Table of Contents

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 01 June 2015

    Author Tags

    1. Citation analysis
    2. Collaborative filtering
    3. Digital library
    4. Information retrieval
    5. Recommendation

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 07 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media