skip to main content
research-article

Inserting One Edge into a Simple Drawing is Hard

Published: 13 August 2022 Publication History

Abstract

A simple drawingD(G) of a graph G is one where each pair of edges share at most one point: either a common endpoint or a proper crossing. An edge e in the complement of G can be inserted into D(G) if there exists a simple drawing of G+e extending D(G). As a result of Levi’s Enlargement Lemma, if a drawing is rectilinear (pseudolinear), that is, the edges can be extended into an arrangement of lines (pseudolines), then any edge in the complement of G can be inserted. In contrast, we show that it is NP-complete to decide whether one edge can be inserted into a simple drawing. This remains true even if we assume that the drawing is pseudocircular, that is, the edges can be extended to an arrangement of pseudocircles. On the positive side, we show that, given an arrangement of pseudocircles A and a pseudosegment σ, it can be decided in polynomial time whether there exists a pseudocircle Φσ extending σ for which A{Φσ} is again an arrangement of pseudocircles.

References

[1]
Angelini, P., Di Battista, G., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.: Testing planarity of partially embedded graphs. ACM Trans. Algorithms 11(4), # 33 (2015)
[2]
Angelini, P., Rutter, I., Sandhya, T.P.: Extending partial orthogonal drawings. In: 28th International Symposium on Graph Drawing and Network Visualization. Lecture Notes in Comput. Sci., vol. 12590, pp. 265–278. Springer, Cham (2020)
[3]
Arroyo, A., Bensmail, J., Richter, R.B.: Extending drawings of graphs to arrangements of pseudolines. In: 36th International Symposium on Computational Geometry. Leibniz Int. Proc. Inform., vol. 164, # 9. Leibniz-Zent. Inform., Wadern (2020)
[4]
Arroyo, A., Derka, M., Parada, I.: Extending simple drawings. In: Graph Drawing and Network Visualization (Prague 2019). Lecture Notes in Comput. Sci., vol. 11904, pp. 230–243. Springer, Cham (2019)
[5]
Arroyo A, McQuillan D, Richter RB, and Salazar G Levi’s lemma, pseudolinear drawings of Kn, and empty triangles J. Graph Theory 2018 87 4 443-459
[6]
Bagheri A and Razzazi M Planar straight-line point-set embedding of trees with partial embeddings Inform. Process. Lett. 2010 110 12–13 521-523
[7]
Brass P, Moser W, and Pach J Research Problems in Discrete Geometry 2005 New York Springer
[8]
Brückner, G., Rutter, I.: Partial and constrained level planarity. In: 28th Annual ACM-SIAM Symposium on Discrete Algorithms (Barcelona 2017), pp. 2000–2011. SIAM, Philadelphia (2017)
[9]
Cabello S and Mohar B Adding one edge to planar graphs makes crossing number and 1-planarity hard SIAM J. Comput. 2013 42 5 1803-1829
[10]
Chambers EW, Eppstein D, Goodrich MT, and Löffler M Drawing graphs in the plane with a prescribed outer face and polynomial area J. Graph Algorithms Appl. 2012 16 2 243-259
[11]
Chaplick, S., Dorbec, P., Kratochvíl, J., Montassier, M., Stacho, J.: Contact representations of planar graphs: extending a partial representation is hard. In: 40th International Workshop on Graph-Theoretic Concepts in Computer Science (Nouan-le-Fuzelier 2014). Lecture Notes in Comput. Sci., vol. 8747, pp. 139–151. Springer, Cham (2014)
[12]
Chaplick S, Fulek R, and Klavík P Extending partial representations of circle graphs J. Graph Theory 2019 91 4 365-394
[13]
Chaplick S, Guśpiel G, Gutowski G, Krawczyk T, and Liotta G The partial visibility representation extension problem Algorithmica 2018 80 8 2286-2323
[14]
Chimani, M., Gutwenger, C., Mutzel, P., Wolf, Ch.: Inserting a vertex into a planar graph. In: 20th Annual ACM-SIAM Symposium on Discrete Algorithms (New York 2009), pp. 375–383. SIAM, Philadelphia (2009)
[15]
Chimani, M., Hliněný, P.: Inserting multiple edges into a planar graph. In: 32nd International Symposium on Computational Geometry (Boston 2016). Leibniz Int. Proc. Inform., vol. 51, # 30. Leibniz-Zent. Inform., Wadern (2016)
[16]
Courcelle B The monadic second-order logic of graphs. I. Recognizable sets of finite graphs Inform. Comput. 1990 85 1 12-75
[17]
Da Lozzo, G., Di Battista, G., Frati, F.: Extending upward planar graph drawings. Comput. Geom. 91, # 101668 (2020)
[18]
Di Giacomo E, Didimo W, Liotta G, Meijer H, and Wismath SK Point-set embeddings of trees with given partial drawings Comput. Geom. 2009 42 6–7 664-676
[19]
Eiben, E., Ganian, R., Hamm, T., Klute, F., Nöllenburg, M.: Extending partial 1-planar drawings. In: 47th International Colloquium on Automata, Languages, and Programming. Leibniz Int. Proc. Inform., vol. 168, # 43. Leibniz-Zent. Inform., Wadern (2020)
[20]
Eiben, E., Ganian, R., Hamm, T., Klute, F., Nöllenburg, M.: Extending nearly complete 1-planar drawings in polynomial time. In: 45th International Symposium on Mathematical Foundations of Computer Science (Prague 2020). Leibniz Int. Proc. Inform., vol. 170, # 31. Leibniz-Zent. Inform., Wadern (2020)
[21]
Felsner, S., Goodman, J.E.: Pseudoline arrangements. In: Handbook of Discrete and Computational Geometry, 3rd edn. Discrete Mathematics and its Applications (Boca Raton), pp. 125–157. CRC Press, Boca Raton (2018)
[22]
Ganian, R., Hamm, T., Klute, F., Parada, I., Vogtenhuber, B.: Crossing-optimal extension of simple drawings. In: 48th International Colloquium on Automata, Languages, and Programming. Leibniz Int. Proc. Inform., vol. 198, # 72. Leibniz-Zent. Inform., Wadern (2021)
[23]
Grünbaum, B.: Arrangements and Spreads. Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, vol. 10. American Mathematical Society, Providence (1972)
[24]
Gutwenger C, Mutzel P, and Weiskircher R Inserting an edge into a planar graph Algorithmica 2005 41 4 289-308
[25]
Hajnal P, Igamberdiev A, Rote G, and Schulz A Saturated simple and 2-simple topological graphs with few edges J. Graph Algorithms Appl. 2018 22 1 117-138
[26]
Klavík, P., Kratochvíl, J., Krawczyk, T., Walczak, B.: Extending partial representations of function graphs and permutation graphs. In: 20th European Symposium on Algorithms (Ljubljana 2012). Lecture Notes in Comput. Sci., vol. 7501, pp. 671–682. Springer, Heidelberg (2012)
[27]
Klavík P, Kratochvíl J, Otachi Y, Rutter I, Saitoh T, Saumell M, and Vyskočil T Extending partial representations of proper and unit interval graphs Algorithmica 2017 77 4 1071-1104
[28]
Klavík P, Kratochvíl J, Otachi Y, and Saitoh T Extending partial representations of subclasses of chordal graphs Theoret. Comput. Sci. 2015 576 85-101
[29]
Klavík P, Kratochvíl J, Otachi Y, Saitoh T, and Vyskočil T Extending partial representations of interval graphs Algorithmica 2017 78 3 945-967
[30]
Kynčl J Improved enumeration of simple topological graphs Discrete Comput. Geom. 2013 50 3 727-770
[31]
Kynčl J, Pach J, Radoičić R, and Tóth G Saturated simple and k-simple topological graphs Comput. Geom. 2015 48 4 295-310
[32]
Levi F Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische Kl. 1926 78 256-267
[33]
Mchedlidze T, Nöllenburg M, and Rutter I Extending convex partial drawings of graphs Algorithmica 2016 76 1 47-67
[34]
Patrignani M On extending a partial straight-line drawing Internat. J. Found. Comput. Sci. 2006 17 5 1061-1069
[35]
Radermacher, M., Rutter, I.: Inserting an edge into a geometric embedding. In: 26th International Symposium on Graph Drawing and Network Visualization (Barcelona 2018). Lecture Notes in Comput. Sci., vol. 11282, pp. 402–415. Springer, Cham (2018)
[36]
Riskin A The crossing number of a cubic plane polyhedral map plus an edge Studia Sci. Math. Hungar. 1996 31 4 405-413
[37]
Schaefer M Crossing Numbers of Graphs. Discrete Mathematics and its Applications (Boca Raton) 2018 Boca Raton CRC Press
[38]
Schaefer, M.: A proof of Levi’s extension lemma (2019). arXiv:1910.05388
[39]
Snoeyink, J., Hershberger, J.: Sweeping arrangements of curves. In: Discrete and Computational Geometry (New Brunswick 1989/1990). DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 6, pp. 309–349. American Mathematical Society, Providence (1991)
[40]
Sturmfels B and Ziegler GM Extension spaces of oriented matroids Discrete Comput. Geom. 1993 10 1 23-45

Index Terms

  1. Inserting One Edge into a Simple Drawing is Hard
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Discrete & Computational Geometry
        Discrete & Computational Geometry  Volume 69, Issue 3
        Apr 2023
        339 pages

        Publisher

        Springer-Verlag

        Berlin, Heidelberg

        Publication History

        Published: 13 August 2022
        Accepted: 24 January 2022
        Revision received: 14 January 2022
        Received: 19 January 2021

        Author Tags

        1. Simple drawings
        2. Arrangements of pseudocircles
        3. Discrete geometry
        4. Graph drawing
        5. Lower bounds
        6. Algorithms

        Author Tags

        1. 68R10
        2. 05C10

        Qualifiers

        • Research-article

        Funding Sources

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 31 Jan 2025

        Other Metrics

        Citations

        View Options

        View options

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media