skip to main content
article

Diameter, width, closest line pair, and parametric searching

Published: 01 December 1993 Publication History

Abstract

We apply Megiddo's parametric searching technique to several geometric optimization problems and derive significantly improved solutions for them. We obtain, for any fixed >0, anO(n1+ ) algorithm for computing the diameter of a point set in 3-space, anO(8/5+ ) algorithm for computing the width of such a set, and onO(n8/5+ ) algorithm for computing the closest pair in a set ofn lines in space. All these algorithms are deterministic.

References

[1]
P. K. Agarwal, B. Aronov, M. Sharir, and S. Suri, Selecting distances in the plane,Proc. 6th ACM Symp. on Computational Geometry, 1990, pp. 321---331. Also inAlgorithmica9 (1993), 495---514.
[2]
P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl. Euclidean minium spanning trees and bichromatic closest pairs,Discrete Comput. Geom.6 (1991), 407---422.
[3]
P. K. Agarwal, A. Efrat, M. Sharir, and S. Toledo, Computing a segment center for a planar point set,J. Algorithms, to appear.
[4]
P. K. Agarwal and J. Matoušek, Ray shooting and parametric search,Proc. 24th Ann. ACM Symp. on Theory of Computing, 1992, pp. 517---526.
[5]
P. K. Agarwal and M. Sharir, Planar geometric location problems.Proc. 2nd ACM Symp. on Discrete Algorithms, 1991, pp. 449---458. (Also to appear inAlgorithmica.)
[6]
P. K. Agarwal, M. Sharir, and S. Toledo, New applications of parametric searching in computational geometry,Proc. 3rd ACM-SIAM Symp. on Discrete Algorithms, 1992, pp. 72---82.
[7]
B. Aronov, M. Pellegrini, and M. Sharir, On the zone of a surface in a hyperplane arrangement,Discrete Comput. Geom.9 (1993), 177---186.
[8]
B. Chazelle, An optimal convex hull algorithm and new results on cuttings,Proc. 32nd Ann. IEEE Symp. on Foundations of Computer Science, 1991, pp. 29---38.
[9]
B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, Lines in space--combinatorics, algorithms and applications,Proc. 20th Ann. ACM Symp. on Theory of Computing, 1989, pp. 382---393.
[10]
B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, A singly exponential stratification scheme for real semi-algebraic varieties and its applications,Proc. 16th ICALP, July 1989, pp. 179---193, LNCS 372, Springer-Verlag, Berlin. Also inTheoret. Comput. Sci.84 (1991), 77---105.
[11]
B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, Algorithms for bichromatic line segment problems and polyhedral terrains,Algorithmica, to appear.
[12]
B. Chazelle, and J. Matoušek, On linear-time deterministic algorithms for optimization problems in fixed dimension,Proc. 4th Ann. ACM-SIAM Symposium on Discrete Algorithms, 1993.
[13]
K. Clarkson and P. Shor, Applications of random sampling to computational geometry,II, Discrete Comput. Geom.4 (1989), 387---421.
[14]
R. Cole, Slowing down sorting networks to obtain faster sorting algorithms,J. Assoc. Comput. Mach.34 (1987), 200---208.
[15]
R. Cole, M. Sharir, and C. Yap, Onk-hulls and related problems,SIAM J. Comput.16 (1987), 61---77.
[16]
H. Edelsbrunner, L. Guibas, and J. Stolfi, Optimal point location in a monotone subdivision,SIAM J. Comput.15 (1986), pp. 317---340.
[17]
D. Haussler and E. Welzl, ¿-nets and simplex range queries,Discrete Comput. Geom.2 (1987), 127---151.
[18]
M. Houle and G. Toussaint, Computing the width of a set,Proc. 1st ACM Symp. on Computational Geometry, 1985, pp. 1---7.
[19]
D. Kirkpatrick, Optimal search in planar subdivisions,SIAM J. Comput.12 (1983), 28---35.
[20]
J. Matoušek, Efficient partition trees,Proc. 7th ACM Symp. on Computational Geometry, 1991, pp. 1---9.
[21]
J. Matoušek, Randomized optimal algorithm for slope selection,Inform. Process. Lett.39 (1991), 183---187.
[22]
J. Matoušek, Approximations and optimal geometric divide-and-conquer,Proc. 23rd ACM Symp. on Theory of Computing, 1991, pp. 1---10.
[23]
J. Matoušek, Computing the center of planar point sets, inDiscrete and Computational Geometry DIMACS (J. E. Goodman, R. Pollack, and W. Steiger, eds.), American Mathematical Society, Providence, RI, 1991, pp. 221---230.
[24]
J. Matoušek, Linear optimization queries,J. Algorithms, to appear.
[25]
N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms,J. Assoc. Comput. Mech.30 (1983), 852---865.
[26]
N. Naor and M. Sharir, Computing a point in the center of a point set in three dimensions.Proc. 2nd Canadian Conference on Computational Geometry, 1990, pp. 10---13.
[27]
A. Stein and M. Werman, Finding the repeated median regression line,Proc. 3rd ACM-SIAM Symp. on Discrete Algorithms, 1992, pp. 409---413.
[28]
S. Toledo, Extremal polygon placement problems,Proc. 7th ACM Symp. on Computational Geometry, (1991), pp. 176---185.
[29]
L. Valiant, Parallelism in comparison problems,SIAM J. Comput.4 (1975), 348---355.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Discrete & Computational Geometry
Discrete & Computational Geometry  Volume 10, Issue 2
August 1993
118 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 December 1993

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 02 Feb 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media