skip to main content
article

Quasi-optimal range searching in spaces of finite VC-dimension

Published: 01 December 1989 Publication History

Abstract

The range-searching problems that allow efficient partition trees are characterized as those defined by range spaces of finite Vapnik-Chervonenkis dimension. More generally, these problems are shown to be the only ones that admit linear-size solutions with sublinear query time in the arithmetic model. The proof rests on a characterization of spanning trees with a low stabbing number. We use probabilistic arguments to treat the general case, but we are able to use geometric techniques to handle the most common range-searching problems, such as simplex and spherical range search. We prove that any set ofn points inEd admits a spanning tree which cannot be cut by any hyperplane (or hypersphere) through more than roughlyn1 1/d edges. This result yields quasi-optimal solutions to simplex range searching in the arithmetic model of computation. We also look at polygon, disk, and tetrahedron range searching on a random access machine. Givenn points inE2, we derive a data structure of sizeO(n logn) for counting how many points fall inside a query convexk-gon (for arbitrary values ofk). The query time isO( kn logn). Ifk is fixed once and for all (as in triangular range searching), then the storage requirement drops toO(n). We also describe anO(n logn)-size data structure for counting how many points fall inside a query circle inO( n log2n) query time. Finally, we present anO(n logn)-size data structure for counting how many points fall inside a query tetrahedron in 3-space inO(n2/3 log2n) query time. All the algorithms are optimal within polylogarithmic factors. In all cases, the preprocessing can be done in polynomial time. Furthermore, the algorithms can also handle reporting within the same complexity (adding the size of the output as a linear term to the query time).

References

[1]
Alon, N., Haussler, D., Welzl, E., Wöginger, G. Partitioning and geometric embedding of range spaces of finite Vapnik-Chervonenkis dimension,Proc. 3rd Ann. ACM Symp. Comput. Geom. (1987), 331---340.
[2]
Assouad, P. Densité et dimension,Ann. Inst. Fourier (Grenoble)33 (1983), 233---282.
[3]
Chazelle, B. Polytope range searching and integral geometry,Proc. 28th Ann. IEEE Symp. Found. Comput. Sci. (1987), 1---10. To appear inJ. Amer. Math. Soc.
[4]
Chazelle, B., Guibas, L. J. Visibility and intersection problems in plane geometry,Proc. 1st Ann. ACM Symp. Comput. Geom. (1985), 135---146. To appear inDiscrete Comput. Geom.
[5]
Dobkin, D. P., Kirkpatrick, D. G. Fast detection of polyhedral intersection,Theoret. Comput. Sci.27 (1983), 241---253.
[6]
Dudley, R. M. Central limit theorems for empirical measures,Ann. Probab.6 (1978), 899---929.
[7]
Edelsbrunner, H.Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.
[8]
Edelsbrunner, H., Guibas, L. J., Hershberger, J., Seidel, R., Sharir, M., Snoeyink, J., Welzl, E. Implicitly representing arrangements of lines or segments.Proc. 4th Ann. ACM Symp. Comput. Geom. (1988), 56---69.
[9]
Edelsbrunner, H., Welzl, E. Halfplanar range search in linear space andO(n0.695) query time,Inform. Process. Lett.23 (1986), 289---293.
[10]
Fredman, M. L. Lower bounds on the complexity of some optimal data structures,SIAM J. Comput.10 (1981), 1---10.
[11]
Haussler, D., Welzl, E. Epsilon-nets and simplex range queries,Discrete Comput. Geom.2 (1987), 127---151.
[12]
Matoušek, J. Spanning trees with low stabbing numbers, manuscript, 1988.
[13]
Mehlhorn, K.Data Structures and Algorithms 3: Multidimensional Searching and Computational Geometry, Springer-Verlag, Heidelberg, 1984.
[14]
Monier, L. Combinatorial solutions of multidimensional divide-and-conquer recurrences,J. Algorithms1 (1980), 60---74.
[15]
Preparata, F. P., Shamos, M. I.Computational Geometry, Springer-Verlag, New York, 1985.
[16]
Sauer, N. On the density of families of sets,J. Combin. Theory Ser. A13 (1972), 145---147.
[17]
Tarjan, R. E. Efficiency of a good but not linear set union algorithm,J. Assoc. Comput. Geom.22 (1975), 215---225.
[18]
Vapnik, V. N., Chervonenkis, A. Ya. On the uniform convergence of relative frequencies of events to their probabilities,Theory Probab. Appl.16 (1971), 264---280.
[19]
Welzl, E., Wöginger, G. On shatter functions of range spaces, manuscript, 1987.
[20]
Willard, D. E. Polygon retrieval,SIAM J. Comput.11 (1982), 149---165.
[21]
Yao, A. C. Space-time tradeoff for answering range queries,Proc. 14th Ann. ACM Symp. Theory Comput. (1982), 128---136.
[22]
Yao, A. C. On the complexity of maintaining partial sums,SIAM J. Comput.14 (1985), 277---288.
[23]
Yao, A. C., Yao, F. F. A general approach tod-dimensional geometric queries,Proc. 17th Ann. ACM Symp. Theory Comput. (1985), 163---168.
[24]
Yao, F. F. A 3-space partition and its applications.Proc. 15th Ann. ACM Symp. Theory Comput. (1983), 258---263.

Cited By

View all
  1. Quasi-optimal range searching in spaces of finite VC-dimension

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Discrete & Computational Geometry
    Discrete & Computational Geometry  Volume 4, Issue 5
    October 1989
    153 pages

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 01 December 1989

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 13 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media